Cite

1. Ansari, S.A. & Husain, Q. (2012). Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A- -Celite 545 immobilized Aspergillus oryzae b galactosidase. Food Bioprod. Proc. 90, 351-359. DOI: http://dx.doi.org/10.1016/j.fbp.2011.07.003.10.1016/j.fbp.2011.07.003Search in Google Scholar

2. Heyman, B. (2006). Lactose intolerance in infants, children and adolescents. Pediatrics 118, 1279-1286. DOI: 10.1542/ peds.2006-1721.10.1542/peds.2006-172116951027Search in Google Scholar

3. Demirhan, E., Apar, D.K. & Ozbek, B. (2010). A modeling study on hydrolysis of whey lactose and stability of β galactosidase. Kor. J. Chem. Eng. 27, 536-545. DOI: 10.1007/ s11814-010-0062-5.10.1007/s11814-010-0062-5Search in Google Scholar

4. Ansari, S.A., Satar, R., Chibber, S. & Khan, M.J. (2013). Enhanced stability of Kluyveromyces lactis β galactosidase immobilized on glutaraldehyde modified multiwalled carbon nanotubes. J. Mol. Cat. B Enz. 97, 258-263. DOI: http://dx.doi.org/10.1016/j.molcatb.2013.09.008.10.1016/j.molcatb.2013.09.008Search in Google Scholar

5. Mateo, C., Palomo, J.M. Fernandez-Lorente, G., Guisan, J.M. & Fernandez-Lafuent, R. (2007). Improvement of enzyme prope rties via immobilization techniques. Enzym. Microb. Technol. 40, 1451-1463. DOI: 10.1016/j.enzmictec.2007.01.018.10.1016/j.enzmictec.2007.01.018Search in Google Scholar

6. Iyer, P.V. & Ananthanarayan L. (2008). Enzyme stability and stabilization: Aqueous and non-aqueous environment. Proc. Biochem. 43, 1019-1032. DOI: http://dx.doi.org/10.1016/j.procbio.2008.06.004.10.1016/j.procbio.2008.06.004Search in Google Scholar

7. Grosova, Z., Rosenberg, M. & Rebros, M. (2008). Perspectives and applications of immobilized β galactosidase in food industry - A review. Czech J. Food Sci. 26, 1-14. DOI: DOI: 10.3109/07388550903330497.10.3109/0738855090333049720143935Search in Google Scholar

8. Betancor, L., Luckarift, R., Seo, H., Brand, O. & Spain, JC. (2008). Three-dimensional immobilization of β galactosidase on a silicon surface. Biotechnol. Bioeng. 99, 261-267. DOI: 10.1002/bit.21570.10.1002/bit.2157017626303Search in Google Scholar

9. Gurdas, S., Gulec, HA. & Mutlu, M. (2012). Immobilization of Aspergillus oryzae β galactosidase onto Duolite A568 resin via simple adsorption mechanism. Food Bioproc. Technol. 5, 904-911. DOI: 10.1007/s11947-010-0384-7.10.1007/s11947-010-0384-7Search in Google Scholar

10. Ansari, S.A. & Satar, R. (2012). Recombinant β-galactosidases - Past, present and future: A mini review. J. Mol. Cat. B Enz. 81, 1-6. DOI: http://dx.doi.org/10.1016/j.molcatb.2012.04.012.10.1016/j.molcatb.2012.04.012Search in Google Scholar

11. Zhou, Q.Z.K. & Chen, X.D. (2001). Immobilization of β galactosidase on graphite surface by glutaraldehyde. J. Food Eng. 48, 69-74. DOI: http://dx.doi.org/10.1016/S0260-8774(00)00147-3.10.1016/S0260-8774(00)00147-3Search in Google Scholar

12. Pessela, B.C.C., Mateo, C., Filho, M., Carrascosa, A. Lafuente, RF. & Guisan, J.M. (2007). Selective adsorption of large proteins on highly activated IMAC supports in the presence of high imidazole concentrations: Purification, reversible immobilization and stabilization of thermophilic α and β galactosidase. Enz. Microb. Technol. 40, 242-248. DOI: 10.1016/j.fct2010.04.016.Search in Google Scholar

13. Diwedi, A. & Kayastha, A.M. (2009). Stabilization of β galactosidase (from peas) by immobilization onto amberlite MB-150 beads and its application in lactose hydrolysis. J. Agric. Food Chem. 57, 682-688. DOI: 10.1021/jf802573j.10.1021/jf802573j19128007Search in Google Scholar

14. Rhimi, M., Boisson, A., Dejob, M., Boudebouze, S., Maguin, E., Haser, R. & Aghajari, N. (2010). Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of β galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Res. Microb. 161, 515-525. DOI: 10.1016/j.resmic.2010.04.011.10.1016/j.resmic.2010.04.01120472057Search in Google Scholar

15. Sun, S., Dong, L., Xu, X. & Shen, S. (2010). Immobilization of β galactosidase from Aspergillus oryzae on macroporous poly GMA newly prepared. Int. J. Chem. 2, 89-96. DOI: 10.1155/2011/682124.10.1155/2011/682124Search in Google Scholar

16. Ansari, S.A. & Husain, Q. (2011). Bioaffinity based immobilization of almond (Amygdalus communis) b galactosidase on Con A-layered calcium alginate-cellulose beads: its application in lactose hydrolysis in batch and continuous mode. Iran. J. Biotechnol. 9, 290-301. DOI: 10.4236/ijb.2011.534032.Search in Google Scholar

17. Dwevedi, A., Kumar, A., Singh, D.P., Srivastava, O.N., & Kayastha, A.M. (2009). Lactose nano-probe optimized using response surface methodology. Biosensors and Bioelectronics 25, 784-790. DOI: 10.1016/j.bios.2009.08.029.10.1016/j.bios.2009.08.02919748770Search in Google Scholar

18. Kishore, D. & Kayastha, A.M. (2012). Optimization of immobilization conditions for chick pea β-galactosidase (CpGAL) to alkylamine glass using response surface methodology and its applications in lactose hydrolysis. Food Chemistry 134, 1113-1122. DOI:10.1016/j.foodchem.2012.03.055.10.1016/j.foodchem.2012.03.05525005995Search in Google Scholar

19. Kishore, D., Talat, M., Srivastava, O.N. & Kayastha, A.M. (2012). Immobilization of β-galactosidase onto functionalized graphene nano-sheets using response surface methodology and its analytical applications towards milk and whey lactose. Plos One 7, e40708. DOI: 10.1371/journal.pone.0040708.10.1371/journal.pone.0040708339989822815797Search in Google Scholar

20. Gulzar, S. & Amin, S. (2012). Kinetic studies on β-galactosidase isolated from apricots (Prunus armeniaca kaisa). Amer. J. Plant Sc. 3, 636-645. DOI: 10.4236/ajps.2012.35077.10.4236/ajps.2012.35077Search in Google Scholar

21. Lowry, O.H., Rosenbrough, N.J, Farr, A.L. & Randall R.J. (1951). Protein measurements with the follin reagent. J. Biol. Chem. 193, 265-275. DOI: 10.1021/jf021099r.10.1021/jf021099r12643635Search in Google Scholar

22. Zhang, S., Gao, S. & Gao, G. (2010). Immobilization of β galactosidase onto magnetic beads. Appl. Biochem. Biotechnol. 160, 1386-1393. DOI: 10.5539/ijc.v5n4p38.10.5539/ijc.v5n4p38Search in Google Scholar

23. Elnashar, M.M.M. & Yassin, M.A. (2009). Lactose hydrolysis by β galactosidase covalently immobilized to thermally stable biopolymers. Appl. Biochem. Biotechnol. 159, 426-437. DOI: 10.1007/s12010-008-8453-3.10.1007/s12010-008-8453-3Search in Google Scholar

24. Park, A. & Oh, D. (2010). Effects of galactose and glucose on the hydrolysis reaction of a thermostable β galactosidase from Caldicellulosiruptor saccharolyticus. Appl. Microb. Biotechnol. 85, 1427-1435. DOI: 10.1007/s00253-009-2165-7.10.1007/s00253-009-2165-7Search in Google Scholar

25. Kaur, G., Panesar, PS., Bera, MB. & Kumar, H. (2009). Hydrolysis of whey lactose using CTAB-permeabilized yeast cells. Bioproc. Biosyst. Eng. 32, 63-67. DOI: 10.1007/s00449-008-0221-9.10.1007/s00449-008-0221-9Search in Google Scholar

26. Mammarella, E.J. & Rubiolo, A.C. (2006). Predicting the packed-bed reactor performance with immobilized microbial lactase. Proc. Biochem. 41, 1627-1636. DOI: 10.1016/j. procbio.2006.03.009.Search in Google Scholar

27. Panesar, R., Panesar, P.S., Singh, R.S., Kennedy, J.F. & Bera, M.B. (2007). Production of lactose hydrolyzed milk using ethanol permeabilized yeast cells. Food Chem. 101, 786-790. DOI: 10.1016/j.foodchem.2006.02.064.10.1016/j.foodchem.2006.02.064Search in Google Scholar

28. Szczodrak, J. (2000). Hydrolysis of lactose in whey permeate by immobilized β galactosidase from Kluveromyces fragilis. J. Mol. Catal. B: Enzym. 10, 631-637. DOI: 10.1016/ S1381-1177(00)00187-9.10.1016/S1381-1177(00)00187-9Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering