Cite

1. Tseng, A.A. (2005). Recent Developments in Nanofabrication Using Focused Ion Beams. Nanofabrication 1 (10), 924-939. DOI: 10.1002/smll.200500113.10.1002/smll.20050011317193371Search in Google Scholar

2. Balasubramanian, K. (2010). Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics: A review. Biosensors and Bioelectronics 26(4), 1195-1204. DOI:10.1016/j. bios.2010.07.041.Search in Google Scholar

3. Walker, G.M., Ramsey, J.M., Cavin, R.K., Herr, D.J., Merzbacher, C.I. & Zhirnov, V. (2009, February). A Framework for Bioelectronics Discovery and Innovation. National Institute of Standards and Technology. Retrieved April 25, 2012, from http://www.nist.gov/pml/div683/upload/bioelectronics_report.pdfSearch in Google Scholar

4. Wang, J. (2006). Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosensors and Bioelectronics 21(10), 1887-1892. DOI:10.1016/j.bios.2005.10.027.10.1016/j.bios.2005.10.02716330202Search in Google Scholar

5. Sadik, O.A., Mwilu, S.K. & Aluoch, A. (2010). Smart electrochemical biosensors: From advanced materials to ultrasensitive devices. Electrochimica Acta 55, 4287-4295. DOI:10.1016/j.electacta.2009.03.008.10.1016/j.electacta.2009.03.008Search in Google Scholar

6. Murray, R.W. (2008). Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores. Chem. Rev. 108(7), 2688-2720. DOI: 10.1021/cr068077e.10.1021/cr068077e18558753Search in Google Scholar

7. Fan, F.R.F. & Bard, A.J. (1995). Electrochemical Detection of Single Molecules, Science 267, 871-875. DOI: 10.1126/ science.267.5199.871.Search in Google Scholar

8. Li, Y.X., Cox, J.T. & Zhang, B. (2010). Electrochemical Responses and Electrocatalysis at Single Au Nanoparticles. J. Am. Chem. Soc. 132(9), 3047-3054. DOI: 10.1021/ja909408q.10.1021/ja909408q20148588Search in Google Scholar

9. Krapf, D., Quinn, B.M., Wu, M.Y., Zandbergen, H.W., Dekker, C. & Lemay, S.G. (2006). Experimental observation of nonlinear ionic transport at the nanometer scale. Nano Letters 6(11), 2531-2535. DOI: 10.1021/nl0619453.10.1021/nl061945317090086Search in Google Scholar

10. Sun, P. & Mirkin, M.V. (2006). Kinetics of Electron- -Transfer Reactions at Nanoelectrodes. Anal. Chem. 78(18), 6526-6534. DOI: 10.1021/ac060924q.10.1021/ac060924q16970330Search in Google Scholar

11. Sun, P., Laforge, F.O., Abeyweera, T.P., Rotenberg, S.A., Carpino, J. & Mirkin, M.V. (2008). Nanoelectrochemistry of mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 105(2), 443-448. DOI: 10.1073/pnas.0711075105.10.1073/pnas.0711075105220655518178616Search in Google Scholar

12. Velmurugan, J., Noel, J.M., Nogala, W. & Mirkin, M.V. (2012). Nucleation and Growth of Metal on Nanoelectrodes. Chem. Sci. 3, 3307-3314. DOI: 10.1039/C2SC21005C.10.1039/c2sc21005cSearch in Google Scholar

13. Velmurugan, J., Zhan, D.P. & Mirkin, M.V. (2010). Electrochemistry through glass. Nature Chem. 2, 498-502. DOI:10.1038/nchem.645.10.1038/nchem.64520489720Search in Google Scholar

14. Zhan, D.P., Velmurugan, J. & Mirkin, M.V. (2009). Adsorption/Desorption of Hydrogen on Pt Nanoelectrodes: Evidence of Surface Diffusion and Spillover. J. Am. Chem. Soc. 131(41), 14756-14760. DOI: 10.1021/ja902876v.10.1021/ja902876v19824729Search in Google Scholar

15. Sun, P. & Mirkin, M.V. (2008). Electrochemistry of Individual Molecules in Zeptoliter Volumes. J. Am. Chem. Soc. 130(26), 8241-8250. DOI: 10.1021/ja711088j.10.1021/ja711088j18540603Search in Google Scholar

16. Arrigan, D.W.M. (2004) Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129, 1157-1165. DOI: 10.1039/B415395M.10.1039/b415395m15565213Search in Google Scholar

17. Errachid, A., Mills, C.A., Pla-Roca, M., Lopez, M.J., Villanueva, G., Bausells, J., Crespo, E., Teixidor, F. & Samitier, J. (2008). Focused ion beam production of nanoelectrode arrays. Mater. Sci. Engin. C 28, 777-780. DOI: 10.1016/j. msec.2007.10.077.Search in Google Scholar

18. Lanyon, Y.H., De Marzi, G., Watson, Y.E., Quinn, A. J., Gleeson, J.P., Redmond, G. & Arrigan, D.W.M. (2007). Fabrication of Nanopore Array Electrodes by Focused Ion Beam Milling. Anal. Chem. 79(8), 3048-3055. DOI: 10.1021/ ac061878x.10.1021/ac061878x17370998Search in Google Scholar

19. Santschi, C., Jenke, M., Hoffmann, P. & Brugger, J. (2006). Interdigitated 50 nm Ti electrode arrays fabricated using XeF2 enhanced focused ion beam etching. Nanotechnology 17, 2722-2729. DOI:10.1088/0957-4484/17/11/0021.Search in Google Scholar

20. Triroj, N., Jaroenapibal, P., Shi, H., Yeh, J.I. & Beresford, R. (2011). Microfl uidic chip-based nanoelectrode array as miniaturized biochemical sensing platform for prostate-specific antigen detection. Biosensors and Bioelectronics 26, 2927-33. DOI: 10.1016/j.bios.2010.11.039.10.1016/j.bios.2010.11.03921190835Search in Google Scholar

21. Moretto, L.M., Tormen, M., De Leo, M., Carpentiero, A. & Ugo, P. (2011). Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography. Nanotechnology 22, 185305 (7pp). DOI:10.1088/0957-4484/22/18/185305.10.1088/0957-4484/22/18/18530521427473Search in Google Scholar

22. Lanyon, Y.H. & Arrigan, D.W.M. (2008). Nanostructured materials in electrochemistry. In A. Eftekhari (Ed.), Top-down approaches to the fabrication of nanopatterned electrodes (pp. 187-210). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/9783527621507.ch3. 10.1002/9783527621507.ch3Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering