Cite

1. Ramesh, K., Hui, L.M., Han, Y.F. & Armando, B. (2009). Structure and reactivity of phosphorous modifi ed H-ZSM-5 catalysts for ethanol dehydration. Catal. Commun. 10, 567-571. DOI: 10.1016/j.catcom.2008.10.034.10.1016/j.catcom.2008.10.034Open DOISearch in Google Scholar

2. Wei, R.H., Li, C.Y., Yang, C.H. & Shan, H.H. (2011). Effects of ammonium exchange and Si/Al ratio on the conversion of methanol to propylene over a novel and large partical size ZSM-5. J. Nat. Gas Chem. 20, 261-265. DOI: 10.1016/S1003-9953(10)60198-3.10.1016/S1003-9953(10)60198-3Open DOISearch in Google Scholar

3. Liu, J., Zhang, C.X., Shen, Z.H., Hua, W.M., Tang, Y., Shen, W., Yue, Y.H. & Xu, H.L. (2009). Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst. Catal. Commun. 10, 1506-1509. DOI: 10.1016/j.catcom. 2009.04.004.10.1016/j.catcom.2009.04.004Open DOISearch in Google Scholar

4. Mei, C.S., Wen, P.Y., Liu, Z.C., Liu, H.X., Wang, Y.D., Yang, W.M., Xie, Z.K., Hua, W.M. & Gao, Z. (2008). Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. J. Catal. 258, 243-249. DOI: 10.1016/j.jcat.2008.06.019.10.1016/j.jcat.2008.06.019Search in Google Scholar

5. Stöcker, M. (1999). Methanol-to-hydrocarbons: catalytic materials and their behavior. Micropor. Mesopor. Mater. 29, 3-48. DOI: 10.1016/S1387-1811(98)00319-9.10.1016/S1387-1811(98)00319-9Open DOISearch in Google Scholar

6. Firoozi, M., Baghalha, M. & Asadi, M. (2009). The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catal. Commun. 10, 1582-1585. DOI: 10.1016/j.catcom.2009.04.021.10.1016/j.catcom.2009.04.021Open DOISearch in Google Scholar

7. Sazama, P., Wichterlova, B., Dedecek, J., Tvaruzkova, Z., Musilova, Z., Palumbo, L., Sklenak, S. & Gonsiorova, O. (2011). FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons. Micropor. Mesopor. Mater. 143, 87-96. DOI: 10.1016/j.micromeso.2011.02.013.10.1016/j.micromeso.2011.02.013Open DOISearch in Google Scholar

8. Chae, H.J., Song, Y.H., Jeong, K.E., Kim, C.U. & Jeong, S.Y. (2010). Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction. J. Phys. Chem. Solids 71, 600-603. DOI: 10.1016/j.jpcs.2009.12.046.10.1016/j.jpcs.2009.12.046Open DOISearch in Google Scholar

9. Svelle, S., Joensen, F., Nerlov, J., Olsbye, U., Lillerud, K.P., Kolboe, S. & Bjørgen, M. (2006). Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes. J. Am. Chem. Soc. 128, 14770-14771. DOI: 10.1021/ja065810a.10.1021/ja065810a17105263Open DOISearch in Google Scholar

10. Svelle, S., Olsbye, U., Joensen, F. & Bjorgen, M. (2007). Conversion of Methanol to Alkenes over Medium- and Large- Pore Acidic Zeolites: Steric Manipulation of the Reaction Intermediates Governs the Ethene/Propene Product Selectivity. J. Phys. Chem. C. 111, 17981-17984. DOI: 10.1021/jp077331j.10.1021/jp077331jOpen DOISearch in Google Scholar

11. Lee, Y.J., Kim, Y.W., Viswanadham, N., Jun, K.W. & Bae, J.W. (2010). Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction. Appl. Catal. A: Gen. 374, 18-25. DOI: 10.1016/j.apcata.2009.11.019.10.1016/j.apcata.2009.11.019Open DOISearch in Google Scholar

12. Zhu, Q.J., Kondo, J.N., Setoyama, T., Yamaguchi, M., Domen, K. & Tatsumi, T. (2008). Activation of hydrocarbons on acidic zeolites superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts. Chem. Commun. 0, 5164-5166. DOI: 10.1039/b809718f.10.1039/b809718fOpen DOISearch in Google Scholar

13. Unneberg, E. & Kolboe, S. (1995). H-[B ]-ZSM-5 as catalyst for methanol reactions. Appl. Catal. A: Gen. 124, 345-354. DOI: 10.1016/0926-860X(95)00005-4.10.1016/0926-860X(95)00005-4Open DOISearch in Google Scholar

14. Sayed, M.B. & Védrine, J.C. (1986). The Effect of Modifi cation with Boron on the Catalytic Activity and Selectivity of HZSM-5 I. Impregnation with Boric Acid. J. Catal. 101, 43-55. DOI: 10.1016/0021-9517(86)90227-7.10.1016/0021-9517(86)90227-7Open DOISearch in Google Scholar

15. Yang, Y., Sun, C., Du, J., Yue, Y., Hua, W., Zhang, C., Shen, W. & Xu, H. (2012). The synthesis of endurable B- Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catal. Commun. 24, 44-47. DOI: 10.1016/j. catcom.2012.03.013.10.1016/j.catcom.2012.03.013Open DOISearch in Google Scholar

16. Argauer, R.J. & Landolt, G.R. (1972). U.S. Patent No. 3702886. Mobil Oil Corporation: U.S. Patent Offi ce.Search in Google Scholar

17. Svelle, S., Sommer, L., Barbera, K., Vennestrøm, P.N.R., Olsbye, U., Lillerud, K.P., Bordiga, S., Pan, Y.H. & Beato, P. (2011). How defects and crystal morphology control the effects of desilication. Catal. Today 168, 38-47. DOI: 10.1016/j. cattod.2010.12.013.10.1016/j.cattod.2010.12.013Open DOISearch in Google Scholar

18. Zhao, G.L., Teng, J.W., Xie, Z.K., Jin, W.Q., Yang, W.M., Chen, Q.L. & Tang, Y. (2007). Effect of phosphorus on HZSM-5 catalyst for C4-olefi n cracking reactions to produce propylene. J. Catal. 248, 29-37. DOI: 10.1016/j.jcat.2007.02.027.10.1016/j.jcat.2007.02.027Search in Google Scholar

19. Zhou, W., Zhang, S.Y., Hao, X.Y., Guo, H., Zhang, C., Zhang, Y.Q. & Liu, S.X. (2006). MFI-type boroaluminosilicate A comparative study between the direct synthesis and the templating method. J. Solid State Chem. 179, 855-865. DOI: 10.1016/j.jssc.2005.12.013.10.1016/j.jssc.2005.12.013Open DOISearch in Google Scholar

20. Coudurier, G. & Vdrine, J.C. (1986). Catalytic and acidic properties of boron pentasil zeolites. Pure Appl. Chem. 58, 1389-1396. DOI: 10.1351/pac198658101389.10.1351/pac198658101389Open DOISearch in Google Scholar

21. Tenney, A.S. & Wong, J. (1972). Vibrational spectra of vapor-deposited binary borosilicate glasses. J. Chem. Phys. 56, 5516-5523. DOI: 10.1063/1.1677069.10.1063/1.1677069Open DOISearch in Google Scholar

22. Wong, J. (1980). Differential infrared (DIR) studies of CVD borosilicate fi lms. J. Electrochem. Sot. 127, 62-67. DOI: 10.1149/1.2129640.10.1149/1.2129640Open DOISearch in Google Scholar

23. Sayed, M.B., Auroux, A. & Védrine, J.C. (1989). The effect of boron on ZSM-5 zeolite shape selectivity and activity: II. Coincorporation of aluminium and boron in the zeolite lattice. J. Catal. 116, 1-10. DOI: 10.1016/0021-9517(89)90070-5.10.1016/0021-9517(89)90070-5Open DOISearch in Google Scholar

24. Jansen, J.C., Ruiter, R.D., Biron, E. & Bekkum, H.V. (1989). Isomorphous Substitution of Si in Zeolite Single Crystals. Part II. On The Boron Distribution and Coordination In [B]-ZSM-5. Stud. Surf. Sci. Catal. 49, 679-688. DOI: 10.1016/ S0167-2991(08)61766-8.10.1016/S0167-2991(08)61766-8Open DOISearch in Google Scholar

25. Datka, J., Cichocki, A. & Piwowarska, Z. (1991). The Properties of Boralites of Various Boron Contents. Stud. Surf. Sci. Catal. 65, 681-688. DOI: 10.1016/S0167-2991(08)62952-3.10.1016/S0167-2991(08)62952-3Open DOISearch in Google Scholar

26. Ruiter, R.d., Kentgens, A.P.M., Grootendorst, J., Jansen, J.C. & Bekkum, H.V. 1993. Calcination and deboronation of [B]-MFI single crystals. Zeolites 13, 128-138. DOI: 10.1016/0144-2449(93)90072-B.10.1016/0144-2449(93)90072-BOpen DOISearch in Google Scholar

27. Dong, W.Y., Sun, Y.J., He, H.Y. & Long, Y.C. (1999). Synthesis and structural characterization of B-Al-ZSM-5 zeolite from boron-silicon porous glass in the vapor phase. Micropor. Mesopor. Mater. 32, 93-100. DOI: 10.1016/S1387-1811(99)00094-3.10.1016/S1387-1811(99)00094-3Open DOISearch in Google Scholar

28. Reddy Marthala, V.R., Wang, W., Jiao, J., Jiang, Y., Huang, J. & Hunger, M. (2007). Effect of probe molecules with different proton affi nities on the coordination of boron atoms in dehydrated zeolite H-[B]ZSM-5. Micropor. Mesopor. Mater. 99, 91-97. DOI: 10.1016/j.micromeso.2006.07.034.10.1016/j.micromeso.2006.07.034Open DOISearch in Google Scholar

29. Millini, R., Perego, G. & Bellussi, G. (1999). Synthesis and characterization of boron-containing molecular Sieves. TopicCatalysis 9, 13-34. DOI: 10.1023/A:1019198119365.10.1023/A:1019198119365Open DOISearch in Google Scholar

30. Kaeding, W.W. & Butter, S.A. (1980). Production of chemicals from methanol: I. Low molecular weight olefi ns. J.Search in Google Scholar

Catal. 61, 155-164. DOI: 10.1016/0021-9517(80)90351-6.10.1016/0021-9517(80)90351-6Open DOISearch in Google Scholar

31. Bjørgen, M., Svelle, S., Joensen, F., Nerlov, J., Kolboe, S., Bonino, F., Palumbo, L., Bordiga, S., & Olsbye, U. (2007). Conversion of methanol to hydrocarbons over zeolite H-ZSM- -5:On the origin of the olefi nic species. J. Catal. 249, 195-207. DOI: 10.1016/j.jcat.2007.04.006.10.1016/j.jcat.2007.04.006Open DOISearch in Google Scholar

32. Bjørgen, M., Joensen, F., Lillerud, K-P., Olsbye, U. & Svelle, S. 2009. The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta. Catal. Today 142, 90-97. DOI: 10.1016/j.cattod.2009.01.01 5 10.1016/j.cattod.2009.01.015Open DOISearch in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering