Acceso abierto

Variation in the Content of Different Forms of Mercury in River Catchments of the Southern Baltic Sea – Case Study


Cite

1. Boening, DW., 2000. Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40 (12):1335-1351;10.1016/S0045-6535(99)00283-0 Search in Google Scholar

2. Bose-O’Reilly, S., McCarty, KM., Steckling, N., Lettmeier, B., 2010. Mercury exposure and children’s heath. Curr Probl Pediatr Adolesc Health Care 40:186–215. https://doi.org/10.1016/j.cppeds.2010.07.002; Search in Google Scholar

3. Hong, Y.S., Kim, Y.M., Lee, K.E., 2012. Methylmercury Exposure and Health Effects. J Prev Med Public Health, 45, 353-363. DOI: 10.3961/jpmph.2012.45.6.353; Search in Google Scholar

4. Kibria, G., 2014. Trace/heavy metals and its impact on environment, biodiversity and human health – a short review. Technical report 1-5. DOI: 10.13140/RG.2.1.3102.2568/1; Search in Google Scholar

5. Jędruch, A., Bełdowska, M., Kwasigroch, U., Normant-Saremba, M., Saniewska, D., 2018. Mercury fractionation in marine macrofauna using thermodesorption technique: Method and its application. Talanta 189. DOI: 10.1016/j.talanta.2018.07.047; Search in Google Scholar

6. Jędruch, A., Bełdowska, M., 2020. Mercury forms in the benthic food web of a temperate coastal lagoon (southern Baltic Sea). Mar Pollut Bull 153, 110968. DOI: 10.1016/j.marpolbul.2020.110968; Search in Google Scholar

7. HELCOM, 2013. Climate change in the Baltic Sea area: HELCOM thematic assessments in 2013 Balt sea Environ Proc 137, 66; Search in Google Scholar

8. Wang D, Shi X, Wei S (2003) Accumulation and transformation of atmospheric mercury in soil. Sci Total Environ 304:209–214;10.1016/S0048-9697(02)00569-7 Search in Google Scholar

9. Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S., 2006. Global anthropogenic mercury emission inventory for 2000. Atmos Environ 40, 4048–4063. DOI: 10.1016/j.atmosenv.2006.03.041; Search in Google Scholar

10. Pacyna, E.G., Pacyna, J.M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S.,Steenhuisen, F., Maxson, P., 2010. Global emission of mercury to the atmospherefrom anthropogenic sources in 2005 and projections to 2020. Atmos Environ 44,2487–2499;10.1016/j.atmosenv.2009.06.009 Search in Google Scholar

11. Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R.,Mukherjee, A.B., Stracher, G.B., Streets, D.G., Telmer, K., 2010. Global mercury emission to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10, 5951–5964. https://doi.org/10.5194/acp-10-5951-201010.5194/acp-10-5951-2010 Search in Google Scholar

12. Bełdowska, M., Saniewska, S., Falkowska, L., Lewandowska, A., 2012. Mercury in particulate matter over Polish zone of the southern Baltic Sea. Atmos Environ 46, 397-404. DOI: 10.1016/j.atmosenv.2011.09.046; Search in Google Scholar

13. Saniewska, D., Bełdowska, M., Bełdowski, J., Saniewski, M., Szubska, M., Romanowski, A., Falkowska, L., 2014. The impact of land use and season on the riverine transport of mercury into the marine coastal zone. Environ Monit Assess 186, 7593–7604. DOI:10.1007/s10661-014-3950-z; Search in Google Scholar

14. Gębka, K., Bełdowska, M., Saniewska, D., Kuliński, K., Bełdowski, J., 2018. Watershed characteristics and climate factors effects on the temporal variability of mercury inthe southern Baltic Sea rivers. J. Environ. Sci. 68, 55–64. https://doi.org/10.1016/j; Search in Google Scholar

15. Gębka K., Bełdowska M., Saniewska D., Korejwo E., Saniewski M., 2020a. Meteorological phenomenon as a key factor controlling variability of labile particulate mercury in rivers and its inflow into coastal zone of the sea. Environmental Research 184, 109355. https://doi.org/10.1016/j.envres.2020.109355; Search in Google Scholar

16. Gębka, K., Saniewska, D., Bełdowska, M., 2020b. Mobility of mercury in soil and itstransport into the sea. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-019-06790-8; Search in Google Scholar

17. Svoray, T., Ben-Said, S., 2010. Soil loss, water ponding and sediment deposition variations as a consequence of rainfall intensity and land use: a multi-criteria analysis. Earth Surf Process Landforms 35, 202–216. DOI:10.1002/esp.1901; Search in Google Scholar

18. Gębka, K., Beldowska, M., Szymczak, E., Saniewska, D., 2019. Temporal changes in the content of labile and stabile mercury forms in soil and their inflow to the southernBaltic Sea. Ecotoxicol Environ Saf 182. https://doi.org/10.1016/j.ecoenv.2019.109434.jes.2017.11.030; Search in Google Scholar

19. Hurley, J.P., Benoit, J.M., Babiarz, C.L., Shafer, M.M., Andren, A.W., Sullivan, J.R., i in., 1995. Influences of watershed characteristics on mercury levels in Wisconsin rivers. Int J Environ Sci Technol 29, 1867–1875. DOI: 10.1021/es00007a026; Search in Google Scholar

20. Lacerda, L.D., Bastos, W.R., Almeida, M.D., 2012. The impacts of land use changes in the mercury flux in the Madeira River. Western Amazon. Earth Sciences. DOI: 10.1590/S0001-37652012000100007; Search in Google Scholar

21. Lechler, P.J., Milller, J.R., Hsu, L.C., Desilets, M.O., 1997. Mercury mobility at the Carson River superfund site, west-central Nevada, USA – interpretation of mercury speciation data in mill tailing, soils, and sediments. J Geochem Explor 58, 259-67. DOI: 10.1016/S0375-6742(96)00071-4; Search in Google Scholar

22. Bełdowski, J., Pempkowiak, J., 2003. Horizontal and vertical variabilities of mercury concentration and speciation in sediments of the GdańskBasin, Southern Baltic Sea. Chemosphere 52:645–654. https://doi.org/10.1016/S0045-6535(03)00246-7; Search in Google Scholar

23. Bełdowska, M., Kobos, J., 2016. Mercury concentration in phytoplankton in response to warming of an autumn – winter season. Environ Pollut 215, 38–47;10.1016/j.envpol.2016.05.00227176763 Search in Google Scholar

24. Korzeniewski, K., 1993. The Puck Bay, FRUG: Gdańsk, Poland; Search in Google Scholar

25. U.S. Environmental Protection Agency (US EPA), 1996. Method 1669. Sampling Ambient Water for determination of Metals at EPA Water Quality Criteria Levels. (Washington); Search in Google Scholar

26. U.S. Environmental Protection Agency (US EPA), 2002. Method 1631. Revision E: Mercury in Water by Oxidation Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. (Washington); Search in Google Scholar

27. Bełdowska, M., Saniewska, D., Gębka, K., Kwasigroch, U., Korejwo, E., Kobos, J., 2018. Simple screening technique for determination of adsorbed and absorbed mercury in particulate matter in atmospheric and aquatic environment. Talanta 182, 340–347. DOI: 10.1016/j.talanta.2018.01.082; Search in Google Scholar

28. Pemkowiak, J., 1997. Zarys geochemii morskiej. Wydawnictwo Uniwersytetu Gdańskiego. ISBN: 83-7017-717-4; Search in Google Scholar

29. Pasieczna, A., 2003. Atlas zanieczyszczeń gleb miejskich w Polsce. Państwowy Instytut Geologiczny, Warszawa. ISBN: 83-7372-636-5; Search in Google Scholar

30. Korejwo, E., Saniewska, D., Bełdowska, M., 2020. Fractionation of mercury in aerosols of the southern Baltic coastal zone. Atmospheric Environment 235:117623. DOI: 10.1016/j.atmosenv.2020.117623; Search in Google Scholar

31. Saniewska, D., Gębka, K., Bełdowska, M., Siedlewicz, G., Bełdowski, J., Wilman, B., 2019. Impact of hydrotechnical works on outflow of mercury from the riparian zone to a river and input to the sea. Mar Pollut Bull 142, 361-376. DOI:10.1016/j.marpolbul.2019.03.059; Search in Google Scholar

32. Inglett, P.W., Reddy, K.R., Corstanje, R., 2005. Anaerobic Soils. In: Encyclopedia of Soils in the Environment. Gainesville, FL, USA: Elsevier;10.1016/B0-12-348530-4/00178-8 Search in Google Scholar

33. Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2019/1009 z dnia 5 czerwca 2019 r. ustanawiające przepisy dotyczące udostępniania na rynku produktow nawozowych UE, zmieniające rozporządzenia (WE) nr 1069/2009 i (WE) nr 1107/2009 oraz uchylające rozporządzenie (WE) nr 2003/2003; Search in Google Scholar

34. Shanley, J.B., Mast, M.A., Campbell, D.H., Aiken, G.R., Krabbenhoft, D.P., i in., 2008.Comparison of total mercury and methylmercury cycling at five sites using the smallwatershed approach. USGS Staff – Published Research, US Geology Survey. https://doi.org/10.1016/j.envpol.2007.12.031; Search in Google Scholar

35. Shuster, P.F.,Shanley, J.B., Reddy, M.M., Aiken, G.R., Marvin-DiPasquale, M., Roth, D.A., Taylor, H.E., Krabbenhoft, D.P., Dewild, J.F., 2008. Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed. Water Air Soil Pollut 187, 89–108. DOI:10.1007/s11270-007-9500-3; Search in Google Scholar

36. Fryirs, K.A., Brierley, G.J., 2012. Sediment movement and deposition in river systems. In:Geomorphic Analysis of River Systems: an Approach to Reading the Landscape. A John Wiley & Sons, Ltd., Publication, pp. 81–115;10.1002/9781118305454.ch6 Search in Google Scholar

37. Murray Hicks, D., Gomez, B., 2016. Sediment transport. In: Mathias Kondolf, G., Piegay, Herve (Eds.), Tools in Fluvial Geomorphology. John Wiley & Sons Ltd, pp. 324–356;10.1002/9781118648551.ch15 Search in Google Scholar

38. Saniewska, D., Bełdowska, M., Bełdowski, J., Saniewski, M., Gębka, K., Szubska, M.,Wochna, A., 2018a. Impact of intense rains and flooding on mercury riverine input to the coastal zone. Mar. Pollut. Bull. 127, 593–602. https://doi.org/10.1016/j.marpolbul.2017.12.058; Search in Google Scholar

39. Bełdowski, J., Bełdowska, M., 2008. Mercury partitioning between solid and suspended phases in the southern Baltic Sea. Rocz. Ochrony Środowska 10, 123–133; Search in Google Scholar

40. Bełdowska, M., Mudrak-Cegiołka, S., 2017. Mercury concentration variability in the zooplankton of the southern Baltic coastal zone. Progress in Oceanography 159, doi:10.1016/j.pocean.2017.09.009; Search in Google Scholar

41. Bernard, S., Enayati, A., Redwood, L., Roger, H., Binstock, T., 2001. Autism: a novel form of mercury poisoning. Med Hypotheses 56, 462–471.10.1054/mehy.2000.128111339848 Search in Google Scholar