This work is licensed under the Creative Commons Attribution 4.0 International License.
Brando, G., Del Pizzo, A. and Meo, S. (2018) ‘Model-Reference Adaptive Control of a Dual Active Bridge DC-DC Converter for Aircraft Applications’, SPEEDAM 2018 - Proceedings: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 502–506. Available at: https://doi.org/10.1109/SPEEDAM.2018.8445242.BrandoG.Del PizzoA.MeoS.2018‘Model-Reference Adaptive Control of a Dual Active Bridge DC-DC Converter for Aircraft Applications’SPEEDAM 2018 - Proceedings: International Symposium on Power Electronics, Electrical Drives, Automation and Motion502506Available at: https://doi.org/10.1109/SPEEDAM.2018.8445242.Search in Google Scholar
Chen, L., Shao, S., et al. (2020) ‘Model Predictive Control for Dual-Active-Bridge Converters Supplying Pulsed Power Loads in Naval DC Micro-Grids’, IEEE Transactions on Power Electronics, 35(2), pp. 1957–1966. Available at: https://doi.org/10.1109/TPEL.2019.2917450.ChenL.ShaoS.2020‘Model Predictive Control for Dual-Active-Bridge Converters Supplying Pulsed Power Loads in Naval DC Micro-Grids’IEEE Transactions on Power Electronics35219571966Available at: https://doi.org/10.1109/TPEL.2019.2917450.Search in Google Scholar
Chen, L., Lin, L., et al. (2020) ‘Moving discretized control set model-predictive control for dual-active bridge with the triple-phase shift’, IEEE Transactions on Power Electronics, 35(8), pp. 8624–8637. Available at: https://doi.org/10.1109/TPEL.2019.2962838.ChenL.LinL.2020‘Moving discretized control set model-predictive control for dual-active bridge with the triple-phase shift’IEEE Transactions on Power Electronics35886248637Available at: https://doi.org/10.1109/TPEL.2019.2962838.Search in Google Scholar
Ding, Zhengtao. (2013) Nonlinear and adaptive control systems. Croydon: The Institution of Engineering and Technology.DingZhengtao.2013Nonlinear and adaptive control systemsCroydonThe Institution of Engineering and TechnologySearch in Google Scholar
Effah, E.K. et al. (2024) ‘Model Reference Adaptive Control of SPS-Based Dual Active Bridge Converter with Constant Power Loading’, Power Electronics and Drives (sciendo), 9(44), pp. 348–357. Available at: https://doi.org/10.2478/pead-2024-0022.EffahE.K.2024‘Model Reference Adaptive Control of SPS-Based Dual Active Bridge Converter with Constant Power Loading’Power Electronics and Drives (sciendo)944348357Available at: https://doi.org/10.2478/pead-2024-0022.Search in Google Scholar
He, J. et al. (2023) ‘Review of Modeling, Modulation, and Control Strategies for the Dual-Active-Bridge DC/DC Converter’, Energies, 16(18). Available at: https://doi.org/10.3390/en16186646.HeJ.2023‘Review of Modeling, Modulation, and Control Strategies for the Dual-Active-Bridge DC/DC Converter’Energies1618Available at: https://doi.org/10.3390/en16186646.Search in Google Scholar
Iqbal, M.T. et al. (2020) ‘Explicit discrete modelling of bidirectional dual active bridge dc-dc converter using multi-time scale mixed system model’, IET Power Electronics, 13(18), pp. 4252–4260. Available at: https://doi.org/10.1049/iet-pel.2020.0293.IqbalM.T.2020‘Explicit discrete modelling of bidirectional dual active bridge dc-dc converter using multi-time scale mixed system model’IET Power Electronics131842524260Available at: https://doi.org/10.1049/iet-pel.2020.0293.Search in Google Scholar
Iyer, V.M., Gulur, S. and Bhattacharya, S. (2019) ‘Small-signal stability assessment and active stabilization of a bidirectional battery charger’, IEEE Transactions on Industry Applications, 55(1), pp. 563–574. Available at: https://doi.org/10.1109/TIA.2018.2871101.IyerV.M.GulurS.BhattacharyaS.2019‘Small-signal stability assessment and active stabilization of a bidirectional battery charger’IEEE Transactions on Industry Applications551563574Available at: https://doi.org/10.1109/TIA.2018.2871101.Search in Google Scholar
Jeung, Y.C. and Lee, D.C. (2019) ‘Voltage and current regulations of bidirectional isolated dual-active-bridge DC-DC converters based on a double-integral sliding mode control’, IEEE Transactions on Power Electronics, 34(7), pp. 6937–6946. Available at: https://doi.org/10.1109/TPEL.2018.2873834.JeungY.C.LeeD.C.2019‘Voltage and current regulations of bidirectional isolated dual-active-bridge DC-DC converters based on a double-integral sliding mode control’IEEE Transactions on Power Electronics34769376946Available at: https://doi.org/10.1109/TPEL.2018.2873834.Search in Google Scholar
Meng, X. et al. (2023) ‘A Novel Intelligent Nonlinear Controller for Dual Active Bridge Converter With Constant Power Loads’, IEEE Transactions on Industrial Electronics, 70(3), pp. 2887–2896. Available at: https://doi.org/10.1109/TIE.2022.3170608.MengX.2023‘A Novel Intelligent Nonlinear Controller for Dual Active Bridge Converter With Constant Power Loads’IEEE Transactions on Industrial Electronics70328872896Available at: https://doi.org/10.1109/TIE.2022.3170608.Search in Google Scholar
Mueller, J.A. and Kimball, J.W. (2018) ‘An Improved Generalized Average Model of DC-DC Dual Active Bridge Converters’, IEEE Transactions on Power Electronics, 33(11), pp. 9975–9988. Available at: https://doi.org/10.1109/TPEL.2018.2797966.MuellerJ.A.KimballJ.W.2018‘An Improved Generalized Average Model of DC-DC Dual Active Bridge Converters’IEEE Transactions on Power Electronics331199759988Available at: https://doi.org/10.1109/TPEL.2018.2797966.Search in Google Scholar
Rahimi, A.M. and Emadi, A. (2009) ‘Active damping in DC/DC power electronic converters: A novel method to overcome the problems of constant power loads’, IEEE Transactions on Industrial Electronics, 56(5), pp. 1428–1439. Available at: https://doi.org/10.1109/TIE.2009.2013748.RahimiA.M.EmadiA.2009‘Active damping in DC/DC power electronic converters: A novel method to overcome the problems of constant power loads’IEEE Transactions on Industrial Electronics56514281439Available at: https://doi.org/10.1109/TIE.2009.2013748.Search in Google Scholar
Shah, S.S. and Bhattacharya, S. (2017) ‘Large & small signal modeling of dual active bridge converter using improved first harmonic approximation’, Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, pp. 1175–1182. Available at: https://doi.org/10.1109/APEC.2017.7930844.ShahS.S.BhattacharyaS.2017‘Large & small signal modeling of dual active bridge converter using improved first harmonic approximation’Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC11751182Available at: https://doi.org/10.1109/APEC.2017.7930844.Search in Google Scholar
Shao, S. et al. (2022) ‘Modeling and Advanced Control of Dual-Active-Bridge DC-DC Converters: A Review’, IEEE Transactions on Power Electronics, 37(2), pp. 1524–1547. Available at: https://doi.org/10.1109/TPEL.2021.3108157.ShaoS.2022‘Modeling and Advanced Control of Dual-Active-Bridge DC-DC Converters: A Review’IEEE Transactions on Power Electronics37215241547Available at: https://doi.org/10.1109/TPEL.2021.3108157.Search in Google Scholar
Wu, M. and Lu, D.D.C. (2015) ‘A Novel Stabilization Method of LC Input Filter with Constant Power Loads Without Load Performance Compromise in DC Microgrids’, IEEE Transactions on Industrial Electronics, 62(7), pp. 4552–4562. Available at: https://doi.org/10.1109/TIE.2014.2367005.WuM.LuD.D.C.2015‘A Novel Stabilization Method of LC Input Filter with Constant Power Loads Without Load Performance Compromise in DC Microgrids’IEEE Transactions on Industrial Electronics62745524562Available at: https://doi.org/10.1109/TIE.2014.2367005.Search in Google Scholar
Xiao, Q. et al. (2020) ‘Model Predictive Control for Dual Active Bridge in Naval DC Microgrids Supplying Pulsed Power Loads Featuring Fast Transition and Online Transformer Current Minimization’, IEEE Transactions on Industrial Electronics, 67(6), pp. 5197–5203. Available at: https://doi.org/10.1109/TIE.2019.2934070.XiaoQ.2020‘Model Predictive Control for Dual Active Bridge in Naval DC Microgrids Supplying Pulsed Power Loads Featuring Fast Transition and Online Transformer Current Minimization’IEEE Transactions on Industrial Electronics67651975203Available at: https://doi.org/10.1109/TIE.2019.2934070.Search in Google Scholar