Cite

A. A. Tanvir, A. Merabet, R. Beguenane, Real-time control of active and reactive power for doubly fed induction generator based wind energy conversion system, Energies 8 (2015) 10389–10408. doi:10.3390/en80910389. Search in Google Scholar

Z. Elhassan, T. Y. Li, Simplified voltage control of paralleling doubly fed induction generators connected to the network using svc, International Transactions on Electrical Energy Systems 25 (11) (2015) 2847–2864. doi:10.1002/etep.1995. Search in Google Scholar

B. Beltran, M. E. Benbouzid, T. Ahmed-Ali, Second-order sliding mode control of a doubly fed induction generator driven wind turbine, IEEE Transactions on Energy Conversion 27 (2) (2012) 261–269. doi:10.1109/TEC.2011.2181515. Search in Google Scholar

V. Utkin, J. Guldner, J. Shi, Sliding mode control in Electro-Mechanical system, CRC press Taylor and Francis Group, Boca Raton, FL, 2009. Search in Google Scholar

R. Pena, J. Clare, G. Asher, A doubly fed induction generator using backto-back pwm converters and its application to variable-speed wind-energy generation, IEE Proceedings-Electric Power Applications 143 (3) (1996) 231–241. doi:10.1049/ip-epa:19960288. Search in Google Scholar

J. Morren, S. de Haan, Ride through of wind turbines with doubly-fed induction generator during a voltage dip, IEEE Transactions on Energy Conversion 20 (2) (2005) 435–441. doi:10.1109/TEC.2005.845526. Search in Google Scholar

V. P. Pinto, J. T. Campos, L. N. D. Reis, C. B. Jacobina, N. Rocha, Robustness and performance analysis for the linear quadratic gaussian/loop transfer recovery with integral action controller applied to doubly fed induction generators in wind energy conversion systems, Electric Power Components and Systems journal 40 (2) (2011) 131–146. doi:10.1080/15325008.2011.629331. Search in Google Scholar

O. Barambones, J. A. Cortajarena, J. M. G. d. D. P. Alkorta, Real-time sliding mode control for a wind energy system based on a doubly fed induction generator, Energies 7 (2014) 6412–6433. doi:10.3390/en7106412. Search in Google Scholar

E. Sanchez, R. Riemann, Doubly Fed Induction Generators: Control for Wind Energy, CRC press Taylor and Francis Group, Boca Raton, FL, 2016. Search in Google Scholar

R. K. Patnaik, P. K. Dash, K. Mahapatra, Adaptive terminal sliding mode power control of dfig based wind energy conversion system for stability enhancement, International Transactions on Electrical Energy Systems 26 (4) (2016) 750–782. doi:10.1002/etep.2105. Search in Google Scholar

M. Ezzat, M. Benbouzid, S. Muyeen, L. Harnefors, Low-voltage ridethrough techniques for dfig-based wind turbines: state-of-the-art review and future trends, in: 39 th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 2013, pp. 7681–7686. doi: 10.1109/IECON.2013.6700413. Search in Google Scholar

I. Sadeghkhani, M. E. Golshan, A. Mehrizi-Sani, J. M. Guerrero, Lowvoltage ride-through of a droop-based three-phase four-wire grid-connected microgird, IET Generation, Transmission & Distribution 12 (8) (2018) 1906–1914. doi:10.1049/iet-gtd.2017.1306. Search in Google Scholar

N. Y. Abed, M. M. Kabsha, G. M. Abdlsalam, Low voltage ride-through protection techniques for dfig wind generator, in: 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 2013. doi:10.1109/PESGM.2012.6345594. Search in Google Scholar

L. Yang, Z. Xu, J. Ostergaard, Z. Dong, K. Wong, Advanced control strategy of dfig wind turbines for power system fault ride through, IEEE Transactions on Power Systems 27 (2012) 713–722. doi:10.1109/TPWRS.2011.2174387. Search in Google Scholar

J. J.Justo, R.C.Bansal, Parallel r-l configuration crowbar with series r-l circuit protection for lvrt strategy of dfig under transient-state, Electric Power System Research 154 (2018) 299–310. doi:10.1016/j.epsr.2017. 09.002. Search in Google Scholar

J. J.Justo, F.Mwasilu, J. W. Jung, Enhanced crowbarless frt strategy for dfig based wind turbines under three-phase voltage dip, Electric Power System Research 142 (2017) 215–226. doi:10.1016/j.epsr.2016.09.029. Search in Google Scholar

Y. Zhou, P. Bauer, J. Ferreira, J. Pierik, Operation of grid-connected dfig under unbalanced grid voltage condition, IEEE Transactions on Energy Conversion 24 (1) (2009) 240–246. doi:10.1109/TEC.2008.2011833. Search in Google Scholar

J. Hu, Y. He, L. Xu, B. Williams, Improved control of dfig systems during network unbalance using pi-r current regulators, IEEE Transactions on Industrial Electronics 56 (2) (2009) 439–451. doi:10.1109/TIE.2008.2006952. Search in Google Scholar

M. J. Morshed, A. Fekih, A new fault ride-through control for dfig-based wind energy systems, Electric Power System Research 146 (2017) 258–269. doi:10.1016/j.epsr.2017.02.010. Search in Google Scholar

L. Djilali, E. N. Sanches, M. Belkheiri, Real time implementation of sliding mode field oriented control for a dfig based wind turbine, International Transactions on Electrical Energy Systems 28 (5) (2018) 1–26. doi:10.1002/etep.2539. Search in Google Scholar

M. Martinez, G. Tapia, A. Susperregui, H. Camblong, Sliding-mode control 505 of a wind turbine-driven double-fed induction generator under non-ideal grid voltages, IET Renewable Power Generation 7 (4) (2013) 370–379. doi:10.1049/iet-rpg.2012.0172. Search in Google Scholar

D. Sun, X. Wang, H. Nian, Z. Q. Zhu, A sliding-mode direct power control strategy for dfig under both balanced and unbalanced grid conditions using extended active power, IEEE Transactions on Power Electronics 33 (2018) 1313–1322. doi:10.1109/TPEL.2017.2686980. Search in Google Scholar

R. Ruiz-Cruz, E. N. Sanchez, A. Loukianov, J. A. Ruz-Hernandez, Realtime neural inverse optimal control for a wind generator, IEEE Transactions on Sustainable Energy (Early Access) 10 (3) (2019) 1172–1183. doi:10.1109/TSTE.2018.2862628. Search in Google Scholar

L. Djilali, E. N. Sanches, M. Belkheiri, Real-time neural sliding mode field oriented control for a dfig-based wind turbine under balanced and unbalanced grid conditions, IET Renewable Power Generation 13 (4) (2019) 618–632. doi:10.1049/iet-rpg.2018.5002. Search in Google Scholar

E. N. Sanchez, A. Y. Alanis, A. G. Loukianov, Discrete-Time High Order Neural Control trained with Kalman filtering, Springer Science & Business Media, Verlag London, Uk, 2008. Search in Google Scholar

G. Rovithakis, M. Chistodoulou, Adaptive Control with Recurrent High Order Neural Networks, Springer Science & Business Media, Verlag London, UK, 2012. Search in Google Scholar

W. Lin, C. I. Byrnes, Design of discrete-time nonlinear control systems via smooth feedback, IEEE Transactions on Automatic Control 39 (11) (1994) 2340–2346. doi:10.1109/9.333790. Search in Google Scholar

L. Saihi, B. Berbaoui, H. Glaoui, L. Djilali, S. Abdeldjalil, Robust sliding 530 mode h controller of dfig based on variable speed wind energy conversion system, Periodica Polytechnica Electrical Engineering and Computer Science 64 (2020) 53–63. doi:doi.org/10.3311/PPee.14490. Search in Google Scholar

J. Hu, Y. He, L. Xu, B. Williams, Four-quadrant dynamometer/power supply, Festo LabVolt Datasheet. Search in Google Scholar

G. Bartolini, A. Ferrara, V. I. Utkin, Adaptive sliding mode control discrete-time system, Automatica 31 (5) (1995) 769–773. Search in Google Scholar

eISSN:
2543-4292
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Computer Sciences, Artificial Intelligence, Engineering, Electrical Engineering, Electronics