Acceso abierto

Sediment thickness in the Bay of Bengal and Andaman Sea compared with topography and geophysical settings by GMT


Cite

[1] Bezrukov, P.L., Neprochnov, Y.P. (1981), Geology and geophysics of the bottom of the eastern part of the Indian Ocean. Moscow, Nauka, 256 ppSearch in Google Scholar

[2] Lemenkova, P., (2020), Integration of geospatial data for mapping variation of sediment thickness in the North Sea. Scientific Annals of the Danube Delta Institute, 25, 129–138Search in Google Scholar

[3] Walling, D.E., (2006), Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology 79 (3–4), 192–21610.1016/j.geomorph.2006.06.019Search in Google Scholar

[4] Lemenkova, P. (2019), Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography, 45(2), 57–8410.3846/gac.2019.3785Search in Google Scholar

[5] Lemenkova, P. (2019), An Empirical Study of R Applications for Data Analysis in Marine Geology. Marine Science and Technology Bulletin, 8(1), 1–910.33714/masteb.486678Search in Google Scholar

[6] Garcia, M. 2008. Sedimentation Engineering: Processes, Measurements, Modeling, and Practice. American Society of Civil Engineers, 1132p. ISBN: 978-0-7844-0814-8Search in Google Scholar

[7] Bustos, M.C., Concha, F., Bürger, R, Tory, E.M., 1999. Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 285 pp. ISBN 0-7923-5960-7Search in Google Scholar

[8] Lemenkova, P. (2020), GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List, 74(1), 19–39Search in Google Scholar

[9] Lemenkova, P., (2020), Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series, 18(1), 41–6010.2478/bgeo-2020-0004Search in Google Scholar

[10] Lemenkova, P. (2019), Geophysical Modelling of the Middle America Trench using GMT. Annals of Valahia University of Targoviste. Geographical Series, 19(2), 73–94Search in Google Scholar

[11] Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., Palhol, F., (2007), Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature, 450 (7168), 40710.1038/nature0627318004382Search in Google Scholar

[12] Garzanti, E., Andò, S., France-Lanord, C., Vezzoli, G., Censi, P., Galy, V., Najman, Y., (2010). Mineralogical and chemical variability of fluvial sediments. 1. Bedload sand (Ganga- Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 299 (3–4), 368–38110.1016/j.epsl.2010.09.017Search in Google Scholar

[13] Lemenkova, P. (2019), Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review, 51(4), 181–19410.2478/pcr-2019-0015Search in Google Scholar

[14] Lemenkova, P. (2019), Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics, 108, 9–2210.2478/rgg-2019-0008Search in Google Scholar

[15] Lemenkova, P. (2019), GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, 14(2), 39–4810.21163/GT_2019.142.04Search in Google Scholar

[16] Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J.F., Wobbe, F. (2013), Generic mapping tools: Improved version released. Eos Transactions American Geophysical Union, 94(45), 409–41010.1002/2013EO450001Search in Google Scholar

[17] GEBCO Compilation Group (2020), GEBCO 2020 Grid. DOI: 10.5285/a29c5465-b138-234d-e053-6c86abc040b9Search in Google Scholar

[18] Data Announcement 88-MGG-02, 1988. Digital relief of the Surface of the Earth. NOAA, National Geophysical Data Center, Boulder, ColoradoSearch in Google Scholar

[19] Pavlis, N.K., Holmes, S.A., Kenyon, S.C. & Factor, J.K. (2012), The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, B0440610.1029/2011JB008916Search in Google Scholar

[20] Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E., Francis, R., (2014), New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346 (6205), 65–6710.1126/science.1258213Search in Google Scholar

[21] Straume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J.M., Abdul Fattah, R., Doornenbal, J.C., Hopper, J.R. 2019. GlobSed: Updated total sediment thickness in the world’s oceans. Geochemistry, Geophysics, Geosystems, 2010.1029/2018GC008115Search in Google Scholar

[22] Rodolfo K. S. 1969, Bathymetry and marine geology of the Andaman basin and tectonic implications for Southern Asia. Geological Society of America Bulletin, 8, 1203—123010.1130/0016-7606(1969)80[1203:BAMGOT]2.0.CO;2Search in Google Scholar

[23] Cochran, J.R. (2010), Morphology and tectonics of the Andaman Forearc, northeastern Indian Ocean. Geophysical Journal International, 182(2), 631–651.10.1111/j.1365-246X.2010.04663.xSearch in Google Scholar

[24] Rodolfo K. S. 1969, Sediments of the Andaman Sea basin, Northeastern Indian ocean. Marine Geology, 7, 371—40210.1016/0025-3227(69)90014-0Search in Google Scholar

[25] Uddin, A., Lundberg, N., 2004, Miocene sedimentation and subsidence during continent–continent collision, Bengal basin, Bangladesh. Sedimentary Geology, 164, 131-14610.1016/j.sedgeo.2003.09.004Search in Google Scholar

[26] Garzanti, E., Andó, S., France-Lanord, C., Censi, P., Vignola, P., Galy, V., Lupker, M., 2011. Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 302 (1–2), 107–12010.1016/j.epsl.2010.11.043Search in Google Scholar

[27] Stummeyer, J., Marchig, V., Knabe, W., (2002), The composition of suspended matter from Ganges–Brahmaputra sediment dispersal system during low sediment transport season. Chemical Geology, 185 (1–2), 125–14710.1016/S0009-2541(01)00396-5Search in Google Scholar

[28] Curray, J.R. (2005), Tectonics and history of the Andaman Sea region. Journal of Asian Earth Sciences, 25(1), 187–23210.1016/j.jseaes.2004.09.001Search in Google Scholar

[29] Jourdain, A., Singh, S.C., Escartin, J., Klinger, Y., Raju, K.A.K., Mcardle, J. (2016), Crustal accretion at a sedimented spreading centre in the Andaman Sea, Geology, 44(5), 351–35410.1130/G37537.1Search in Google Scholar

[30] Schenke, H. W., Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 81, 16–21Search in Google Scholar

[31] Lemenkova, P., (2020), R Libraries {dendextend} and {magrittr} and Clustering Package scipy.cluster of Python For Modelling Diagrams of Dendrogram Trees. Carpathian Journal of Electronic and Computer Engineering, 13(1), 5-1210.2478/cjece-2020-0002Search in Google Scholar

[32] Lemenkova, P. (2019), AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering, 65(4), 1–2210.35180/gse-2019-0020Search in Google Scholar

[33] Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosciences, 5(1), 28–4210.2478/s13533-012-0120-0Search in Google Scholar

[34] Suetova, I. A., Ushakova, L. A., Lemenkova, P. (2005). Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4, 138–142Search in Google Scholar

[35] Lemenkova, P. (2011). Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. Netherlands: University of Twente. 158 ppSearch in Google Scholar

eISSN:
2392-6139
Idioma:
Inglés