Cite

ABDELGHAFFAR A.W. 2010. Spark ignition engine fueled by Hydrogen: Comparative analysis. European Journal of Scientific Research 44: 13–28. ABDELGHAFFARA.W. 2010 Spark ignition engine fueled by Hydrogen: Comparative analysis European Journal of Scientific Research 44 13 28 Search in Google Scholar

AL-BAGHDADI M. 2020. An overview of hydrogen as an alternative fuel. Encyclopedia 2020. https://encyclopedia.pub/revision/9798/v1 (accessed on 12 June 2021). AL-BAGHDADIM. 2020 An overview of hydrogen as an alternative fuel Encyclopedia 2020 https://encyclopedia.pub/revision/9798/v1 (accessed on 12 June 2021). Search in Google Scholar

BARAŃSKA K., PETELSKI Ł. 2022. Czy wodór zastąpi w przyszłości benzynę? Nowa Energia nr 1(82). BARAŃSKAK. PETELSKIŁ. 2022 Czy wodór zastąpi w przyszłości benzynę? Nowa Energia nr 1(82). Search in Google Scholar

BOGUCKA M., PIKOŃ K. Współczesne problemy ochrony środowiska i energetyki 2019. Politechnika Śląska 2020. BOGUCKAM. PIKOŃK. Współczesne problemy ochrony środowiska i energetyki 2019 Politechnika Śląska 2020 Search in Google Scholar

BORETTI A. 2019. Transient positive ignition internal combustion engines have now surpassed the 50% fuel conversion efficiency barrier. Int. J. Hydrogen Energy 44: 7051–7052. BORETTIA. 2019 Transient positive ignition internal combustion engines have now surpassed the 50% fuel conversion efficiency barrier Int. J. Hydrogen Energy 44 7051 7052 Search in Google Scholar

BRZEŻAŃSKI M., CISEK J., MAREK W., PAPUGA T. 2013. Investigation of the combustion engine fuelled with hydrogen. Combustion Engines 154(3): 1042–1048. ISSN 0138-0346. BRZEŻAŃSKIM. CISEKJ. MAREKW. PAPUGAT. 2013 Investigation of the combustion engine fuelled with hydrogen Combustion Engines 154 3 1042 1048 ISSN 0138-0346. Search in Google Scholar

BRZEŻAŃSKI M., RODAK L. 2019. Influence of the method of creating a hydrogen-air mixture on the emission of nitrogen oxides in a spark-ignition engine. Combustion Engines 178(3): 224–227. doi: 10.19206/CE-2019-339 BRZEŻAŃSKIM. RODAKL. 2019 Influence of the method of creating a hydrogen-air mixture on the emission of nitrogen oxides in a spark-ignition engine Combustion Engines 178 3 224 227 10.19206/CE-2019-339 Open DOISearch in Google Scholar

BRZEŻAŃSKI M., RODAK L. 2019. Investigation of a new concept of hydrogen supply for a spark ignition engine. Combustion Engines 178(3): 140–143. doi: 10.19206/CE-2019-324 BRZEŻAŃSKIM. RODAKL. 2019 Investigation of a new concept of hydrogen supply for a spark ignition engine Combustion Engines 178 3 140 143 10.19206/CE-2019-324 Open DOISearch in Google Scholar

CINIVIZ M., KOSE H. 2012. Hydrogen use in internal combustion engine: a review. International Journal of Automotive Engineering and Technologies 1: 1–15. 7 CINIVIZM. KOSEH. 2012 Hydrogen use in internal combustion engine: a review International Journal of Automotive Engineering and Technologies 1 1 15. 7 Search in Google Scholar

DAS M. L. 2002. Hydrogen engine: research and development (R&D) programmers in Indian Institute of Technology (IIT), Delhi. International Journal of Hydrogen Energy 27: 953–965. DASM. L. 2002 Hydrogen engine: research and development (R&D) programmers in Indian Institute of Technology (IIT), Delhi International Journal of Hydrogen Energy 27 953 965 Search in Google Scholar

DASZKIEWICZ P., IDZIOR M., BAJERLEIN M., KARPIUK W. 2013. Perspektywa progresu wskaźników ekologicznych silnika badawczego zasilanego olejem napędowym z domieszką wodoru. TTS 10. DASZKIEWICZP. IDZIORM. BAJERLEINM. KARPIUKW. 2013 Perspektywa progresu wskaźników ekologicznych silnika badawczego zasilanego olejem napędowym z domieszką wodoru. TTS 10 Search in Google Scholar

DIMITRIOU P., TSUJIMURA T. 2017. A review of hydrogen as a compression ignition engine fuel. Int. J. Hydrogen Energy 42: 24470–24486. DIMITRIOUP. TSUJIMURAT. 2017 A review of hydrogen as a compression ignition engine fuel Int. J. Hydrogen Energy 42 24470 24486 Search in Google Scholar

EICHLSEDER H., WALLNER T., FREYMANN R., RINGLER J. 2003. The potential of hydrogen internal combustion engines in a future mobility scenario. Warrendale, PA, USA: SAE International. EICHLSEDERH. WALLNERT. FREYMANNR. RINGLERJ. 2003 The potential of hydrogen internal combustion engines in a future mobility scenario Warrendale, PA, USA SAE International Search in Google Scholar

FAIZAL M., CHUAH L.S., LEE C., HAMEED A., LEE J., SHANKAR M. 2019. Review of hydrogen fuel for internal combustion engines. J. Mech. Eng. Res. Dev. (JMERD) 42: 35–46. FAIZALM. CHUAHL.S. LEEC. HAMEEDA. LEEJ. SHANKARM. 2019 Review of hydrogen fuel for internal combustion engines J. Mech. Eng. Res. Dev. (JMERD) 42 35 46 Search in Google Scholar

FOLENTARSKA A., KULAWIK D., CIESIELSKI W., PAVLYUK V. 2016. Nowoczesne materiały do przechowywania wodoru jako paliwa przyszłości. Częstochowa 2016r. FOLENTARSKAA. KULAWIKD. CIESIELSKIW. PAVLYUKV. 2016 Nowoczesne materiały do przechowywania wodoru jako paliwa przyszłości Częstochowa 2016r Search in Google Scholar

GRAFF M. 2020. Wodór jako paliwo – zalety i wady, TTS Technika Transportu Szynowego, Instytut Naukowo-Wydawniczy „TTS” Sp. z o.o, 2020, s. 18; Auto Świat. https://www.auto-swiat.pl/wiadomosci/aktualnosci/wodor-paliwo-przyszlosci-bez-przyszlosci/nt6jx7h. GRAFFM. 2020 Wodór jako paliwo – zalety i wady, TTS Technika Transportu Szynowego, Instytut Naukowo-Wydawniczy „TTS” Sp. z o.o, 2020, s. 18; Auto Świat https://www.auto-swiat.pl/wiadomosci/aktualnosci/wodor-paliwo-przyszlosci-bez-przyszlosci/nt6jx7h. Search in Google Scholar

GUPTA B. R 2008. Hydrogen fuel production, transport and storage. CRC Press: 1–603. ISBN 978-1-4200-4575-8. GUPTAB. R 2008 Hydrogen fuel production, transport and storage CRC Press 1 603 ISBN 978-1-4200-4575-8. Search in Google Scholar

HEINDL R., EICHLSEDER H., SPULLER C., GERBIG F., HELLER K. 2009. New and innovative combustion systems for the H2-ICE: compression ignition and combined processes. Warrendale, PA, USA: SAE International; SAE paper no. 2009-01-1421. HEINDLR. EICHLSEDERH. SPULLERC. GERBIGF. HELLERK. 2009 New and innovative combustion systems for the H2-ICE: compression ignition and combined processes Warrendale, PA, USA SAE International SAE paper no. 2009-01-1421. Search in Google Scholar

HORVÁTH J., SZEMESOVÁ J. 2023. Is a carbon-neutral pathway in road transport possible? A case study from Slovakia. Sustainability 15(16): 12246. https://doi.org/10.3390/su151612246 HORVÁTHJ. SZEMESOVÁJ. 2023 Is a carbon-neutral pathway in road transport possible? A case study from Slovakia Sustainability 15 16 12246 https://doi.org/10.3390/su151612246 Search in Google Scholar

HUANG Z., WANG J., LIU B., ZENG K., YU J., JIANG D. 2006. Combustion characteristics of a direct-injection engine fueled with natural gas-hydrogen mixtures. Energy & Fuels 20: 540–546. HUANGZ. WANGJ. LIUB. ZENGK. YUJ. JIANGD. 2006 Combustion characteristics of a direct-injection engine fueled with natural gas-hydrogen mixtures Energy & Fuels 20 540 546 Search in Google Scholar

IDZIOR M., BAJERLEIN M., BIELIŃSKI M., DASZKIEWICZ M., STOBNICKI P. 2013r. Badanie wpływu dodatku wodoru do kolektora dolotowego na emisję zanieczyszczeń stacjonarnego silnika spalinowego z bezpośrednim wtryskiem. PTNSS–2013r–SC–133. IDZIORM. BAJERLEINM. BIELIŃSKIM. DASZKIEWICZM. STOBNICKIP. 2013r Badanie wpływu dodatku wodoru do kolektora dolotowego na emisję zanieczyszczeń stacjonarnego silnika spalinowego z bezpośrednim wtryskiem PTNSS–2013r–SC–133. Search in Google Scholar

KAWAMURA A., SATO Y., NAGANUMA K., YAMANE K., TAKAGI Y. 2010. Development project of a multi-cylinder DISI hydrogen ICE System for heavy duty vehicles. Warrendale, PA, USA: SAE International; SAE paper no. 2010-01-2175. KAWAMURAA. SATOY. NAGANUMAK. YAMANEK. TAKAGIY. 2010 Development project of a multi-cylinder DISI hydrogen ICE System for heavy duty vehicles Warrendale, PA, USA SAE International SAE paper no. 2010-01-2175. Search in Google Scholar

KAWAMURA A., YANAI T., SATO Y., NAGANUMA K., YAMANE K., TAKAGI Y. 2009. Summary and progress of the hydrogen ICE truck development project. Warrendale, PA, USA: SAE International; SAE paper no. 2009-01-1922. KAWAMURAA. YANAIT. SATOY. NAGANUMAK. YAMANEK. TAKAGIY. 2009 Summary and progress of the hydrogen ICE truck development project Warrendale, PA, USA SAE International SAE paper no. 2009-01-1922. Search in Google Scholar

KORAKIANITIS T., NAMASIVAYAM M. A., CROOKES J. R. 2010. Hydrogen dual-fuelling of compression ignition engines with emulsified biodiesel as pilot fuel. International Journal Of Hydrogen Energy 35: 13329–13344 KORAKIANITIST. NAMASIVAYAMM. A. CROOKESJ. R. 2010 Hydrogen dual-fuelling of compression ignition engines with emulsified biodiesel as pilot fuel International Journal Of Hydrogen Energy 35 13329 13344 Search in Google Scholar

KRUCZYŃSKI A., ŚLIĘZAK M., GIS W., ORLIŃSKI P. Ocena wpływu spalania dodatku wodoru na własności eksploatacyjne silnika o zapłonie samoczynnym. Instytut Pojazdów Politechniki Warszawskiej, Instytut Transportu Samochodowego. KRUCZYŃSKIA. ŚLIĘZAKM. GISW. ORLIŃSKIP. Ocena wpływu spalania dodatku wodoru na własności eksploatacyjne silnika o zapłonie samoczynnym Instytut Pojazdów Politechniki Warszawskiej, Instytut Transportu Samochodowego Search in Google Scholar

LEVCHENKO R. 2021. Technologie przyszłości – wodór. Archiwum Wiedzy Inżynierskiej. Tom 6(6): 43–47. LEVCHENKOR. 2021 Technologie przyszłości – wodór. Archiwum Wiedzy Inżynierskiej Tom 6 6 43 47 Search in Google Scholar

MARSZAŁEK N. 2019. Wodór jako paliwo alternatywne dla transportu lotniczego. Autobusy 12. MARSZAŁEKN. 2019 Wodór jako paliwo alternatywne dla transportu lotniczego Autobusy 12 Search in Google Scholar

MINISTRY OF CLIMATE AND ENVIRONMENT. 2021. Polish hydrogen strategy until 2030 with an outlook until 2040. 21 Warsaw. https://www.gov.pl/web/klimat/polska-strategia-wodorowa-do-roku-2030 MINISTRY OF CLIMATE AND ENVIRONMENT 2021 Polish hydrogen strategy until 2030 with an outlook until 2040 21 Warsaw. https://www.gov.pl/web/klimat/polska-strategia-wodorowa-do-roku-2030 Search in Google Scholar

SARAVANAN N., NAGARAJAN G. 2010. Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source. Applied Energy 87: 2218–2229 SARAVANANN. NAGARAJANG. 2010 Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source Applied Energy 87 2218 2229 Search in Google Scholar

SARAVANAN N., NAGARAJAN G. 2009. Performance and emission study in manifold hydrogen injection with diesel as an ignition source for different start of injection, Renewable Energy 34: 328–334. SARAVANANN. NAGARAJANG. 2009 Performance and emission study in manifold hydrogen injection with diesel as an ignition source for different start of injection Renewable Energy 34 328 334 Search in Google Scholar

SARAVANAN N., NAGARAJAN G., SANJAY G., DHANASEKARAN C., KALAISELVAN M.K. 2008. Combustion analysis on a DI diesel engine with hydrogen in dual fuel mode. Fuel 87: 3591–3599. SARAVANANN. NAGARAJANG. SANJAYG. DHANASEKARANC. KALAISELVANM.K. 2008 Combustion analysis on a DI diesel engine with hydrogen in dual fuel mode Fuel 87 3591 3599 Search in Google Scholar

STĘPIEŃ Z. 2021. A comprehensive overview of hydrogen-fueled internal combustion engines: achievements and future challenges. Energies 14(20): 6504. https://doi.org/10.3390/en14206504 STĘPIEŃZ. 2021 A comprehensive overview of hydrogen-fueled internal combustion engines: achievements and future challenges Energies 14 20 6504 https://doi.org/10.3390/en14206504 Search in Google Scholar

STĘPIEŃ Z., URZĘDOWSKA W. 2021. Tłokowe silniki spalinowe zasilane wodorem – wyzwania. Nafta-Gaz 2021r 12, s.: 830–840. STĘPIEŃZ. URZĘDOWSKAW. 2021 Tłokowe silniki spalinowe zasilane wodorem – wyzwania Nafta-Gaz 2021r 12, s.: 830 840 Search in Google Scholar

SZAŁEK A., PIELECHA I., CIESLIK W. 2021. Fuel cell electric vehicle (FCEV) energy flow analysis in real driving conditions (RDC). Energies 14(16): 5018. https://doi.org/10.3390/en14165018 SZAŁEKA. PIELECHAI. CIESLIKW. 2021 Fuel cell electric vehicle (FCEV) energy flow analysis in real driving conditions (RDC) Energies 14 16 5018 https://doi.org/10.3390/en14165018 Search in Google Scholar

SZWAJA S., GRAB-ROGALINSKI K. 2009. Hydrogen combustion in a compression ignition diesel engine. International Journal of Hydrogen Energy 34: 4413–4421. SZWAJAS. GRAB-ROGALINSKIK. 2009 Hydrogen combustion in a compression ignition diesel engine International Journal of Hydrogen Energy 34 4413 4421 Search in Google Scholar

TATAREWICZ I., SKWIERZ S., LEWARSKI M., JESZKE R., PYRKA M., SEKUŁA, M. 2023. Mapping the future of green hydrogen: Integrated analysis of Poland and the EU's development pathways to 2050. Energies 16: 6261. https://doi.org/10.3390/en16176261 TATAREWICZI. SKWIERZS. LEWARSKIM. JESZKER. PYRKAM. SEKUŁAM. 2023 Mapping the future of green hydrogen: Integrated analysis of Poland and the EU's development pathways to 2050 Energies 16 6261 https://doi.org/10.3390/en16176261 Search in Google Scholar

WAHAB ABD BIN ASWAD M. 2009. Addition of hydrogen to gasoline-fuelled 4 stroke SI engine using 1-dımensıonal analysis. Faculty of Mechanical Engineering University Malaysia Pahang: 1–68. WAHAB ABD BIN ASWAD M 2009 Addition of hydrogen to gasoline-fuelled 4 stroke SI engine using 1-dımensıonal analysis Faculty of Mechanical Engineering University Malaysia Pahang 1 68 Search in Google Scholar

WIĄCEK D. 2011r. Wodór jako paliwo przyszłości. Autobusy 10. WIĄCEKD. 2011r Wodór jako paliwo przyszłości Autobusy 10. Search in Google Scholar

EUROPEAN COMMISSION. 2020. A hydrogen strategy for climate-neutral Europe. Brussels. p. 8. https://knowledge4policy.ec.europa.eu/publication/communication-com2020301-hydrogen-strategy-climate-neutral-europe_en EUROPEAN COMMISSION 2020 A hydrogen strategy for climate-neutral Europe Brussels 8 https://knowledge4policy.ec.europa.eu/publication/communication-com2020301-hydrogen-strategy-climate-neutral-europe_en Search in Google Scholar

EUROPEAN COMMISSION. 2019. Clean energy for all Europeans package. https://energy.ec.europa.eu/topics/energy-strategy/clean-energy-all-europeans-package_en EUROPEAN COMMISSION 2019 Clean energy for all Europeans package https://energy.ec.europa.eu/topics/energy-strategy/clean-energy-all-europeans-package_en Search in Google Scholar

EUROPEAN COMMISSION. 2021. Fit for 55. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0550 EUROPEAN COMMISSION 2021 Fit for 55 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0550 Search in Google Scholar

EUROPEAN COMMISSION. 2021. Fit for 55: Delivering the EU's 2030 climate target on the way to climate neutrality. Brussels. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0550 EUROPEAN COMMISSION 2021 Fit for 55: Delivering the EU's 2030 climate target on the way to climate neutrality Brussels https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0550 Search in Google Scholar

EUROPEAN COMMISSION. 2020. Powering a climate-neutral economy: An EU strategy for energy system integration. Brussels. Com(2020) 299 Final. 2020, 9. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A52020DC0299 EUROPEAN COMMISSION 2020 Powering a climate-neutral economy: An EU strategy for energy system integration Brussels Com(2020) 299 Final. 2020, 9. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A52020DC0299 Search in Google Scholar

EUROPEAN COMMISSION. 2022. REPowerEU: A plan to rapidly reduce dependence on Russian fossil fuels and fast forward the green transition. Brussels. p. 7. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN EUROPEAN COMMISSION 2022 REPowerEU: A plan to rapidly reduce dependence on Russian fossil fuels and fast forward the green transition Brussels 7 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN Search in Google Scholar

eISSN:
2353-8589
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Ecology