Cite

1. Strand DS, Kim D, Peura DA. 25 Years of Proton Pump Inhibitors: A Comprehensive Review. Gut Liver. 2017 Jan 15;11(1):27–37.10.5009/gnl15502 Search in Google Scholar

2. A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat Rev Drug Discov. 2003 Feb;2(2):132–9.10.1038/nrd1010 Search in Google Scholar

3. Fülöp F, Noszál B, Szász G, Takácsné Novák K. Gyógyszerészi kémia, Semmelweis Kiadó. Budapest; 2010. 455–459. Search in Google Scholar

4. Roche VF. The Chemically Elegant Proton Pump Inhibitors. Am J Pharm Educ. 2006 Sep;70:101.10.5688/aj7005101 Search in Google Scholar

5. Andersson T, Weidolf L. Stereoselective Disposition of Proton??Pump Inhibitors. Clin Drug Investig. 2008;28:263–79.10.2165/00044011-200828050-00001 Search in Google Scholar

6. Council Of Europe : European Directorate for the Quality of Medicines and Healthcare. European Pharmacopoeia 10.0. Strasbourg; 2019. Search in Google Scholar

7. United States Pharmacopeial Convention. USP 42 - NF 37 The United States Pharmacopeia and National Formulary 2019. Search in Google Scholar

8. Bernardo-Bermejo S, Sánchez-López E, Castro-Puyana M, Marina ML. Chiral capillary electrophoresis. TrAC Trends Anal Chem. 2020 Mar 1;124:115807.10.1016/j.trac.2020.115807 Search in Google Scholar

9. Scriba GKE. Chiral recognition in separation science – an update. J Chromatogr A. 2016 Oct;1467:56–78.10.1016/j.chroma.2016.05.061 Search in Google Scholar

10. Scriba GKE. Chiral recognition in separation sciences. Part I: Polysaccharide and cyclodextrin selectors. TrAC Trends Anal Chem. 2019 Nov;120:115639.10.1016/j.trac.2019.115639 Search in Google Scholar

11. Saz JM, Marina ML. Recent advances on the use of cyclodextrins in the chiral analysis of drugs by capillary electrophoresis. J Chromatogr A. 2016 Oct;1467:79–94.10.1016/j.chroma.2016.08.029 Search in Google Scholar

12. Eberle D, Hummel RP, Kuhn R. Chiral resolution of pantoprazole sodium and related sulfoxides by complex formation with bovine serum albumin in capillary electrophoresis. J Chromatogr A. 1997 Jan;759:185–92.10.1016/S0021-9673(96)00769-8 Search in Google Scholar

13. Bonato PS, Paias FO. Enantioselective analysis of omeprazole in pharmaceutical formulations by chiral high-performance liquid chromatography and capillary electrophoresis. J Braz Chem Soc. 2004 Apr;15:318–23.10.1590/S0103-50532004000200025 Search in Google Scholar

14. Nevado JJB, Peñalvo GC, Dorado RMR. Method development and validation for the separation and determination of omeprazole enantiomers in pharmaceutical preparations by capillary electrophoresis. Anal Chim Acta. 2005 Mar;533:127–33.10.1016/j.aca.2004.11.018 Search in Google Scholar

15. Olsson J, Stegander F, Marlin N, Wan H, Blomberg LG. Enantiomeric separation of omeprazole and its metabolite 5-hydroxyomeprazole using non-aqueous capillary electrophoresis. J Chromatogr A. 2006 Oct;1129:291–5.10.1016/j.chroma.2006.07.001 Search in Google Scholar

16. Olsson J, Marlin ND, Blomberg LG. Enantiomeric Separation of Omeperazole Enantiomers by Aqueous CE Using UV and MS Detection. Chromatographia. 2007 Sep 3;66:421–5.10.1365/s10337-007-0317-4 Search in Google Scholar

17. Ma Z, Zhang L, Lin L, Ji P, Guo X. Enantioseparation of rabeprazole and omeprazole by nonaqueous capillary electrophoresis with an ephedrine-based ionic liquid as the chiral selector. Biomed Chromatogr. 2010 Dec;24:1332–7.10.1002/bmc.1445 Search in Google Scholar

18. Guan J, Li H, Yan F, Shi S, Wang S. Optimization and validation of a novel CE method for the enantioseparation of pantoprazole and related benzimididazole using a dual chiral selector system. Electrophoresis. 2014 Oct;35(19):2800–6.10.1002/elps.201400305 Search in Google Scholar

19. Xu Y, Hong T, Chen X, Ji Y. Affinity capilary electrophoresis and fluorescence spectroscopy for studying enantioselective interactions between omeprazole enantiomer and human serum albumin. Electrophoresis. 2017 May;38:1366–73.10.1002/elps.201600375 Search in Google Scholar

20. Estevez P, Flor S, Boscolo O, Tripodi V, Lucangioli S. Development and validation of a capillary electrophoresis method for determination of enantiomeric purity and related substances of esomeprazole in raw material and pellets. Electrophoresis. 2014 Mar;35:804–10.10.1002/elps.201300334 Search in Google Scholar

21. Hancu G, Papp LA, Rusu A. Chiral Separation of the Enantiomers of Omeprazole and Pantoprazole by Capillary Electrophoresis. Chromatographia. 2015 Feb 12;78:279–84.10.1007/s10337-014-2827-1 Search in Google Scholar

22. Wren SAC, Rowe RC. Theoretical aspects of chiral separation in capillary electrophoresis. J Chromatogr A. 1992 Jun;603:235–41.10.1016/0021-9673(92)85366-2 Search in Google Scholar

23. Wren SAC, Rowe RC. Theoretical aspects of chiral separation in capillary electrophoresis. J Chromatogr A. 1992 Sep;609:363–7.10.1016/0021-9673(92)80181-S Search in Google Scholar

24. Chankvetadze B. Chiral Recognition and Enantioseparation Mechanisms in Capillary Electrokinetic Chromatography. In: Chiral Recognition in Separation Methods. Berlin, Heidelberg:Springer Berlin Heidelberg; 2010. p. 97–152.10.1007/978-3-642-12445-7_5 Search in Google Scholar

25. Scriba GKE. Fundamental aspects of chiral electromigration techniques and application in pharmaceutical and biomedical analysis. J Pharm Biomed Anal. 2011 Jun;55:688–701.10.1016/j.jpba.2010.11.01821131154 Search in Google Scholar

26. Ušelová-Včeláková K, Zusková I, Gaš B. Stability constants of amino acids, peptides, proteins, and other biomolecules determined by CE and related methods: Recapitulation of published data. Electrophoresis. 2007 Jul;28:2145–52.10.1002/elps.20060078017607809 Search in Google Scholar

27. Müllerová L, Dubský P, Gaš B. Twenty years of development of dual and multiselector models in capillary electrophoresis: A review. Electrophoresis. 2014 Oct;35:2688–2700.10.1002/elps.20140014924946108 Search in Google Scholar

28. Dubský P, Dvořák M, Ansorge M. Affinity capillary electrophoresis: the theory of electromigration. Anal Bioanal Chem. 2016 Dec 24;408:8623–41.10.1007/s00216-016-9799-y27558099 Search in Google Scholar

29. Müllerová L, Dubský P, Gaš B. Generalized model of elect-romigration with 1:1 (analyte:selector) complexation stoichiometry: Part II. Application to dual systems and experimental verification. J Chromatogr A. 2015 Mar 6;1384:147–54.10.1016/j.chroma.2015.01.05525666498 Search in Google Scholar

30. Hammitzsch-Wiedemann M, Scriba GKE. Mathematical Approach by a Selectivity Model for Rationalization of pH-and Selector Concentration-Dependent Reversal of the Enantiomer Migration Order in Capillary Electrophoresis. Anal Chem. 2009 Nov;81(21):8765–73.10.1021/ac901160p19810711 Search in Google Scholar

31. Dubský P, Svobodová J, Tesařová E, Gaš B. Enhanced selectivity in CZE multi-chiral selector enantioseparation systems: Proposed separation mechanism. Electrophoresis. 2010 Mar; 31: 1435–41F.10.1002/elps.20090074220358549 Search in Google Scholar

eISSN:
2537-5059
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other, Medicine, Clinical Medicine, Pharmacy