Cite

1. Stafstrom CE, Carmant L. Seizures and Epilepsy : An Overview for Neuroscientists. Cold Spring Harb Perspect Med. 2015;1–18.10.1101/cshperspect.a022426444869826033084 Search in Google Scholar

2. Behr C, Lévesque M, Stroh T, Avoli M. Time-dependent evolution of seizures in a model of mesial temporal lobe epilepsy. Neurobiol Dis. 2017;106:205–13.10.1016/j.nbd.2017.07.00828709992 Search in Google Scholar

3. Rosa María Querol Pascual. Temporal Lobe Epilepsy : Clinical Semiology and Neurophysiological Studies. Semin Ultrasound MRI. 2007;416–23.10.1053/j.sult.2007.09.00418074998 Search in Google Scholar

4. Zangiabadi N, Ladino LD, Sina F. Deep Brain Stimulation and Drug-Resistant Epilepsy : A Review of the Literature. Front Neurol. 2019;10:1–18.10.3389/fneur.2019.00601656369031244761 Search in Google Scholar

5. Klinger N, Mittal S. Deep brain stimulation for seizure control in drug-resistant epilepsy. Neurosurg Focus. 2018;45(2):1–8.10.3171/2018.4.FOCUS187230064326 Search in Google Scholar

6. Sprengers M, Vonck K, Carrette E, Ag M, Boon P, Sprengers M, et al. Deep brain and cortical stimulation for epilepsy (Review). Cochrane Database Syst Rev. 2017;7(7).10.1002/14651858.CD008497.pub3648331628718878 Search in Google Scholar

7. Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15(3):148–60.10.1038/s41582-018-0128-2639764430683913 Search in Google Scholar

8. Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol. 2016;115:19–38.10.1152/jn.00281.2015476049626510756 Search in Google Scholar

9. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51:899–908.10.1111/j.1528-1167.2010.02536.x20331461 Search in Google Scholar

10. de Curtis M, Jefferys JGR, Avoli M. Interictal Epileptiform Discharges in Partial Epilepsy: Complex Neurobiological Mechanisms Based on Experimental and Clinical Evidence. 4th editio. Noebels JL, Avoli M, Rogawski M, Olsen R, Delgado-Escueta A, editors. Jasper’s Basic Mechanisms of the Epilepsies. Bethesda (MD): National Center for Biotechnology Information (US); 2012. 213–227 p.10.1093/med/9780199746545.003.0017 Search in Google Scholar

11. Staba RJ, Stead M, Worrell GA. Electrophysiological Biomarkers of Epilepsy. Neurotherapeutics. 2014;11:334–46.10.1007/s13311-014-0259-0 Search in Google Scholar

12. Pitkänen A, Löscher W, Vezzani A, Becker AJ, Simonato M, Lukasiuk K, et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 2016;15(8):843–56.10.1016/S1474-4422(16)00112-5 Search in Google Scholar

13. Salami P, Lévesque M, Benini R, Behr C, Gotman J, Avoli M. Dynamics of interictal spikes and high-frequency oscillations during epileptogenesis in temporal lobe epilepsy. Neurobiol Dis. 2014;67:97–106.10.1016/j.nbd.2014.03.012487889624686305 Search in Google Scholar

14. Li L, Patel M, Almajano J, Engel J, Bragin A. Extrahippocampal high-frequency oscillations during epileptogenesis. Epilepsia. 2018;59(4):51–5.10.1111/epi.14041668189829508901 Search in Google Scholar

15. Ewell LA, Fischer KB, Leibold C, Leutgeb S, Leutgeb JK. The impact of pathological high-frequency oscillations on hippo-campal network activity in rats with chronic epilepsy. Elife. 2019;10.7554/eLife.42148.025 Search in Google Scholar

16. Yang Y, Wang J. From Structure to Behavior in Basolateral Amygdala-Hippocampus Circuits. Front Neural Circuits. 2017;11:1–8.10.3389/fncir.2017.00086567150629163066 Search in Google Scholar

17. Tyrand R, Seeck M, Spinelli L, Pralong E, Vulliémoz S, Foletti G, et al. Effects of amygdala — hippocampal stimulation on interictal epileptic discharges. Epilepsy Res. 2012;99(2):87–93.10.1016/j.eplepsyres.2011.10.02622079883 Search in Google Scholar

18. Langevin JP, Chen JWY, Koek RJ, Sultzer DL, Mandelkern MA, Schwartz HN, et al. Deep brain stimulation of the baso-lateral amygdala: Targeting technique and electrodiagnostic findings. Brain Sci. 2016;6(3):28.10.3390/brainsci6030028503945727517963 Search in Google Scholar

19. Paxinos G, Charles Watson. The Rat Brain in Stereotaxic Coordinates Sixth Edition. 6th Editio. Paxinos G, Watson C, editors. Elsevier Academic Press. Academic Press; 2007. 456 p. Search in Google Scholar

20. Navarrete M, Alvarado-Rojas C, Quyen ML Van. RIPPLELAB : A Comprehensive Application for the Detection, Analysis and Classification of High Frequency Oscillations in Electroencephalographic Signals. PLoS One. 2016;10.1371/journal.pone.0158276492041827341033 Search in Google Scholar

21. Zelmann R, Mari F, Jacobs J, Zijlmans M, Dubeau F, Gotman J. Clinical Neurophysiology A comparison between detectors of high frequency oscillations. Clin Neurophysiol. 2012;123(1):106–16.10.1016/j.clinph.2011.06.006378248821763191 Search in Google Scholar

22. Zijlmans M, Jiruska P, Zelmann R, Leijten FSS, Jefferys JGR, Gotman J. High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol. 2012;71(2):169–78.10.1002/ana.22548375494722367988 Search in Google Scholar

23. Jacobs J, Staba R, Asano E, Otsubo H, Wu JY, Zijlmans M, et al. High-frequency oscillations (HFOs) in clinical epilepsy. Prog Neurobiol. 2012;98(3):302–15.10.1016/j.pneurobio.2012.03.001367488422480752 Search in Google Scholar

24. Wang Y, Liang J, Xu C, Wang Y, Kuang Y, Xu Z, et al. Low-frequency stimulation in anterior nucleus of thalamus alleviates kainate-induced chronic epilepsy and modulates the hippocampal EEG rhythm. Exp Neurol. 2015;276:22–30.10.1016/j.expneurol.2015.11.01426621617 Search in Google Scholar

25. Salam MT, Luis J, Velazquez P, Genov R, Member S. Seizure Suppression Efficacy of Closed-loop Versus Open-loop Deep Brain Stimulation in a Rodent Model of Epilepsy. IEEE. 2015;4320.10.1109/TNSRE.2015.249897326571534 Search in Google Scholar

26. Sprengers M, Raedt R, Emil L, Jan W, Paul W, Kristl B. Deep brain stimulation reduces evoked potentials with a dual time course in freely moving rats : Potential neurophysiological basis for intermittent as an alternative to continuous stimulation. Epilepsia. 2020;61(5):903–13.10.1111/epi.1649832297989 Search in Google Scholar

27. Deng J, Luan G. Mechanisms of Deep Brain Stimulation for Epilepsy and Associated Comorbidities. Neuropsychiatry (London). 2017;1:31–7.10.4172/Neuropsychiatry.1000S1005 Search in Google Scholar

28. Costard LS, Neubert V, Venø MT, Su J, Kjems J, Connolly NMC, et al. Brain Stimulation Electrical stimulation of the ventral hippocampal commissure delays experimental epilepsy and is associated with altered microRNA expression. Brain Stimul. 2019;12(6):1390–401.10.1016/j.brs.2019.06.00931208877 Search in Google Scholar

29. Thomschewski A, Hincapié A, Frauscher B. Localization of the Epileptogenic Zone Using High Frequency Oscillations. Front Neurol. 2019;10.10.3389/fneur.2019.00094637891130804887 Search in Google Scholar

30. Pastor J, Vega-Zelaya L. Clinical Neurophysiology A new potential specifically marks the sensory thalamus in anaesthetised patients. Clin Neurophysiol. 2019;130:1926–36.10.1016/j.clinph.2019.07.02631437745 Search in Google Scholar

31. Cimbálník J, Pail M, Chrastina J, Hermanová M, Brázdil M, Pavel R. Hippocampal high frequency oscillations in unilateral and bilateral mesial temporal lobe epilepsy. Clin Neurophysiol. 2019;130(7):1151–9.10.1016/j.clinph.2019.03.02631100580 Search in Google Scholar

32. Carla J, Oliveira D, Castro D De, Henrique G, Souza D, Flávio M, et al. Epilepsy & Behavior Temporally unstructured electrical stimulation to the amygdala suppresses behavioral chronic seizures of the pilocarpine animal model. Epilepsy Behav. 2014;36:159–64.10.1016/j.yebeh.2014.05.00524935084 Search in Google Scholar

33. de Oliveira JC, Maciel RM, Moraes MFD, Rosa Cota V. Asynchronous, bilateral, and biphasic temporally unstructured electrical stimulation of amygdalae enhances the suppression of pentylenetetrazole-induced seizures in rats. Epilepsy Res. 2018;146:1–8.10.1016/j.eplepsyres.2018.07.00930053674 Search in Google Scholar

34. Nieuwenhuyse B Van, Raedt R, Delbeke J, Wadman WJ, Boon P, Vonck K. Brain Stimulation In Search of Optimal DBS Paradigms to Treat Epilepsy : Bilateral Versus Unilateral Hippocampal Stimulation in a Rat Model for Temporal Lobe Epilepsy. Brain Stimul. 2015;8(2):192–9.10.1016/j.brs.2014.11.01625554585 Search in Google Scholar

35. McIntyre C, Foutz T. Computational modeling of deep brain stimulation. Handb Clin Neurol. 2013;116(216):55–61.10.1016/B978-0-444-53497-2.00005-X557075924112884 Search in Google Scholar

36. Wendling F. Modulation of epileptic activity by deep brain stimulation : a model-based study of frequency-dependent effects. Front Comput Neurosci. 2013;7(July):1–16.10.3389/fncom.2013.00094371228623882212 Search in Google Scholar

37. Wyckhuys T, Boon P, Raedt R, Nieuwenhuyse B Van, Vonck K. Suppression of hippocampal epileptic seizures in the kainate rat by Poisson distributed stimulation. 2010;51(11):2297–304. Search in Google Scholar

eISSN:
2537-5059
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other, Medicine, Clinical Medicine, Pharmacy