Automatic bird song and syllable segmentation with an open-source deep-learning object detection method – a case study in the Collared Flycatcher (Ficedula albicollis)
Publicado en línea: 16 dic 2019
Páginas: 59 - 66
Recibido: 12 sept 2019
Aceptado: 21 oct 2019
DOI: https://doi.org/10.2478/orhu-2019-0015
Palabras clave
© 2019 Sándor Zsebők et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
The bioacoustic analyses of animal sounds result in an enormous amount of digitized acoustic data, and we need effective automatic processing to extract the information content of the recordings. Our research focuses on the song of Collared Flycatcher