Acceso abierto

Radiation synthesis of poly(acrylic acid) nanogels for drug delivery applications – post-synthesis product colloidal stability


Cite

Oh, J. K., Lee, D. I., & Park, J. M. (2009). Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polym. Sci., 34(12), 1261–1282. DOI: 10.1016/j.progpolymsci.2009.08.001. OhJ. K. LeeD. I. ParkJ. M. 2009 Biopolymer-based microgels/nanogels for drug delivery applications Prog. Polym. Sci. 34 12 1261 1282 10.1016/j.progpolymsci.2009.08.001 Open DOISearch in Google Scholar

Dispenza, C., Adamo, G., Sabatino, M. A., Grimaldi, N., Bulone, D., Bondì, M. L., Rigogliuso, S., & Ghersi, G. (2014). Oligonucleotides-decorated-poly(N-vinyl pyrrolidone) nanogels for gene delivery. J. Appl. Polym. Sci., 131(2), 1–8. DOI: 10.1002/app.39774C. DispenzaC. AdamoG. SabatinoM. A. GrimaldiN. BuloneD. BondìM. L. RigogliusoS. GhersiG. 2014 Oligonucleotides-decorated-poly(N-vinyl pyrrolidone) nanogels for gene delivery J. Appl. Polym. Sci. 131 2 1 8 10.1002/app.39774C Open DOISearch in Google Scholar

Picone, P., Sabatino, M. A., Ditta, L. A., Amato, A., San Biagio, P. L., Mulè, F., Giacomazza, D., Dispenza, C., & Di Carlo, M. (2018). Nose-to-brain delivery of insulin enhanced by a nanogel carrier. J. Control. Release, 270, 23–36. DOI: 10.1016/j.jconrel.2017.11.040. PiconeP. SabatinoM. A. DittaL. A. AmatoA. San BiagioP. L. MulèF. GiacomazzaD. DispenzaC. Di CarloM. 2018 Nose-to-brain delivery of insulin enhanced by a nanogel carrier J. Control. Release 270 23 36 10.1016/j.jconrel.2017.11.040 29196041 Open DOISearch in Google Scholar

Argentiere, S., Blasi, L., Ciccarella, G., Barbarella, G., Cingolani, R., & Gigli, G. (2009). Synthesis of poly(acrylic acid) nanogels and application in loading and release of an oligothiophene fluorophore and its bovine serum albumin conjugate. Macromol. Symp., 281(1), 69–76. DOI: 10.1002/masy.200950709. ArgentiereS. BlasiL. CiccarellaG. BarbarellaG. CingolaniR. GigliG. 2009 Synthesis of poly(acrylic acid) nanogels and application in loading and release of an oligothiophene fluorophore and its bovine serum albumin conjugate Macromol. Symp. 281 1 69 76 10.1002/masy.200950709 Open DOISearch in Google Scholar

Argentiere, S., Blasi, L., Morello, G., & Gigli, G. (2011). A novel pH-responsive nanogel for the controlled uptake and release of hydrophobic and cationic solutes. J. Phys. Chem. C, 115(33), 16347–16353. DOI: 10.1021/jp204954a. ArgentiereS. BlasiL. MorelloG. GigliG. 2011 A novel pH-responsive nanogel for the controlled uptake and release of hydrophobic and cationic solutes J. Phys. Chem. C 115 33 16347 16353 10.1021/jp204954a Open DOISearch in Google Scholar

De Jong, W. H., & Borm, P. J. (2008). Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed., 3(2), 133–149. DOI: 10.2147/ijn.s596. De JongW. H. BormP. J. 2008 Drug delivery and nanoparticles: applications and hazards Int. J. Nanomed. 3 2 133 149 10.2147/ijn.s596 252766818686775 Open DOISearch in Google Scholar

Molina, M., Asadian-Birjand, M., Balach, J., Bergueiro, J., Miceli, E., & Calderón, M. (2015). Stimuli-responsive nanogel composites and their application in nanomedicine. Chem. Soc. Rev., 44(17), 6161–6186. DOI: 10.1039/c5cs00199d. MolinaM. Asadian-BirjandM. BalachJ. BergueiroJ. MiceliE. CalderónM. 2015 Stimuli-responsive nanogel composites and their application in nanomedicine Chem. Soc. Rev. 44 17 6161 6186 10.1039/c5cs00199d 26505057 Open DOISearch in Google Scholar

Munavirov, B. V., Filippov, A. V., Rudakova, M. A., & Antzutkin, O. N. (2014). Polyacrylic acid modifies local and lateral mobilities in lipid membranes. J. Dispers. Sci. Technol., 35(6), 848–858. DOI: 10.1080/01932691.2013.823096. MunavirovB. V. FilippovA. V. RudakovaM. A. AntzutkinO. N. 2014 Polyacrylic acid modifies local and lateral mobilities in lipid membranes J. Dispers. Sci. Technol. 35 6 848 858 10.1080/01932691.2013.823096 Open DOISearch in Google Scholar

Miao, X., Ho, S. L., Tegafaw, T., Cha, H., Chang, Y., Oh, I. T., Yasenn, A. M., Marasini, S., Ghazanfari, A., Yue, H., Chae, K. S., & Lee, G. H. (2018). Stable and non-toxic ultrasmall gadolinium oxide nanoparticle colloids (coating material = polyacrylic acid) as high-performance: T1 magnetic resonance imaging contrast agents. RSC Adv., 8(6), 3189–3197. DOI: 10.1039/c7ra11830a. MiaoX. HoS. L. TegafawT. ChaH. ChangY. OhI. T. YasennA. M. MarasiniS. GhazanfariA. YueH. ChaeK. S. LeeG. H. 2018 Stable and non-toxic ultrasmall gadolinium oxide nanoparticle colloids (coating material = polyacrylic acid) as high-performance: T1 magnetic resonance imaging contrast agents RSC Adv. 8 6 3189 3197 10.1039/c7ra11830a 907752835541201 Open DOISearch in Google Scholar

González-Gómez, M. A., Belderbos, S., Yañez-Vilar, S., Piñeiro, Y., Cleeren, F., Bormans, G., Deroose, C. M., Gsell, W., Himmelreich, U., & Rivas, J. (2019). Development of superparamagnetic nanoparticles coated with polyacrylic acid and aluminum hydroxide as an efficient contrast agent for multimodal imaging. Nanomaterials, 9(11), 1–20. DOI: 10.3390/nano9111626. González-GómezM. A. BelderbosS. Yañez-VilarS. PiñeiroY. CleerenF. BormansG. DerooseC. M. GsellW. HimmelreichU. RivasJ. 2019 Development of superparamagnetic nanoparticles coated with polyacrylic acid and aluminum hydroxide as an efficient contrast agent for multimodal imaging Nanomaterials 9 11 1 20 10.3390/nano9111626 691578831731823 Open DOISearch in Google Scholar

Khandhar, A. P., Liang, H., Simpson, A. C., Reed, S. G., Carter, D., Fox, C. B., & Orr, M. T. (2020). Physicochemical structure of a polyacrylic acid stabilized nanoparticle alum (nanoalum) adjuvant governs TH1 differentiation of CD4+ T cells. Nanoscale, 12(4), 2515–2523. DOI: 10.1039/c9nr09936k. KhandharA. P. LiangH. SimpsonA. C. ReedS. G. CarterD. FoxC. B. OrrM. T. 2020 Physicochemical structure of a polyacrylic acid stabilized nanoparticle alum (nanoalum) adjuvant governs TH1 differentiation of CD4+ T cells Nanoscale 12 4 2515 2523 10.1039/c9nr09936k Open DOISearch in Google Scholar

Hardin, N. Z., Ravula, T., Di Mauro, G., & Ramamoorthy, A. (2019). Hydrophobic functionalization of polyacrylic acid as a versatile platform for the development of polymer lipid nanodisks. Small, 15(9), 1–5. DOI: 10.1002/smll.201804813. HardinN. Z. RavulaT. Di MauroG. RamamoorthyA. 2019 Hydrophobic functionalization of polyacrylic acid as a versatile platform for the development of polymer lipid nanodisks Small 15 9 1 5 10.1002/smll.201804813 Open DOISearch in Google Scholar

Huang, L., Wang, J., Huang, S., Siaw-Debrah, F., Nyanzu, M., & Zhuge, Q. (2019). Polyacrylic acid-coated nanoparticles loaded with recombinant tissue plasminogen activator for the treatment of mice with ischemic stroke. Biochem. Bioph. Res. Co., 516(2), 565–570. https://doi.org/10.1016/j.bbrc.2019.06.079. HuangL. WangJ. HuangS. Siaw-DebrahF. NyanzuM. ZhugeQ. 2019 Polyacrylic acid-coated nanoparticles loaded with recombinant tissue plasminogen activator for the treatment of mice with ischemic stroke Biochem. Bioph. Res. Co. 516 2 565 570 https://doi.org/10.1016/j.bbrc.2019.06.079. 10.1016/j.bbrc.2019.06.079 Search in Google Scholar

Elliott, J. E., MacDonald, M., Nie, J., & Bowman, C. N. (2004). Structure and swelling of poly(acrylic acid) hydrogels: Effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer, 45(5), 1503–1510. DOI: 10.1016/j.polymer.2003.12.040. ElliottJ. E. MacDonaldM. NieJ. BowmanC. N. 2004 Structure and swelling of poly(acrylic acid) hydrogels: Effect of pH, ionic strength, and dilution on the crosslinked polymer structure Polymer 45 5 1503 1510 10.1016/j.polymer.2003.12.040 Open DOISearch in Google Scholar

De la Torre, P. M., Enobakhare, Y., Torrado, G., & Torrado, S. (2003). Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid) study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials, 24(8), 1499–1506. DOI: 10.1016/S0142-9612(02)00512-43. De la TorreP. M. EnobakhareY. TorradoG. TorradoS. 2003 Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid) study of polymer/polymer and polymer/drug interactions within the network structure Biomaterials 24 8 1499 1506 10.1016/S0142-9612(02)00512-43 Open DOISearch in Google Scholar

Hu, Y., Jiang, X., Ding, Y., Ge, H., Yuan, Y., & Yang, C. (2002). Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials, 23(15), 3193–3201. DOI: 10.1016/S0142-9612(02)00071-6. HuY. JiangX. DingY. GeH. YuanY. YangC. 2002 Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles Biomaterials 23 15 3193 3201 10.1016/S0142-9612(02)00071-6 Open DOISearch in Google Scholar

Ulanski, P., Bothe, E., Hildenbrand, K., Rosiak, J. M., & von Sonntag, C. (1996). Hydroxyl-radical-induced reactions of poly(acrylic acid); a pulse radiolysis, EPR and product study. Part I. Deoxygenated aqueous solutions. J. Chem. Soc. Perkin Trans. 2, 1, 13–22. DOI: 10.1039/p29960000013. UlanskiP. BotheE. HildenbrandK. RosiakJ. M. von SonntagC. 1996 Hydroxyl-radical-induced reactions of poly(acrylic acid); a pulse radiolysis, EPR and product study. Part I. Deoxygenated aqueous solutions J. Chem. Soc. Perkin Trans. 2 1 13 22 10.1039/p29960000013 Open DOISearch in Google Scholar

Ulański, P., Bothe, E., Hildenbrand, K., Rosiak, J. M., & von Sonntag, C. (1996). Hydroxyl-radical-induced reactions of poly(acrylic acid); a pulse radiolysis, EPR and product study. Part II. Oxygenated aqueous solutions. J. Chem. Soc. Perkin Trans. 2, 1, 23–28. DOI: 10.1039/p29960000023. UlańskiP. BotheE. HildenbrandK. RosiakJ. M. von SonntagC. 1996 Hydroxyl-radical-induced reactions of poly(acrylic acid); a pulse radiolysis, EPR and product study. Part II. Oxygenated aqueous solutions J. Chem. Soc. Perkin Trans. 2 1 23 28 10.1039/p29960000023 Open DOISearch in Google Scholar

Chen, B., Jerger, K., Fréchet, J. M. J., & Szoka, F. C. (2009). The influence of polymer topology on pharmacokinetics: Differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers. J. Control. Release, 140(3), 203–209. DOI: 10.1016/j.jconrel.2009.05.021. ChenB. JergerK. FréchetJ. M. J. SzokaF. C. 2009 The influence of polymer topology on pharmacokinetics: Differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers J. Control. Release 140 3 203 209 10.1016/j.jconrel.2009.05.021 278810219465070 Open DOISearch in Google Scholar

Munavirov, B., Gnezdilov, O., Rudakova, M., Antzutkin, O. N., & Filippov, A. (2013). Interaction of polyacrylic acid with lipid bilayers: Effect of polymer mass. Magn. Reson. Chem., 51(11), 750–755. DOI: 10.1002/mrc.4013. MunavirovB. GnezdilovO. RudakovaM. AntzutkinO. N. FilippovA. 2013 Interaction of polyacrylic acid with lipid bilayers: Effect of polymer mass Magn. Reson. Chem. 51 11 750 755 10.1002/mrc.4013 25939341 Open DOISearch in Google Scholar

Yessine, M. -A., & Leroux, J. -C. (2004). Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules. Adv. Drug. Deliver. Rev., 56(7), 999–1021. DOI: 10.1016/j.addr.2003.10.039. YessineM. -A. LerouxJ. -C. 2004 Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules Adv. Drug. Deliver. Rev. 56 7 999 1021 10.1016/j.addr.2003.10.039 Open DOISearch in Google Scholar

Fujiwara, M., Grubbs, R. H., & Baldeschwieler, J. D. (1997). Characterization of pH-dependent poly(acrylic acid) complexation with phospholipid vesicles. J. Colloid Interf. Sci., 185(1), 210–216. DOI: 10.1006/jcis.1996.4608. FujiwaraM. GrubbsR. H. BaldeschwielerJ. D. 1997 Characterization of pH-dependent poly(acrylic acid) complexation with phospholipid vesicles J. Colloid Interf. Sci. 185 1 210 216 10.1006/jcis.1996.4608 Open DOISearch in Google Scholar

Chieng, Y. Y., & Chen, S. B. (2010). Interaction between poly(acrylic acid) and phospholipid vesicles: Effect of pH, concentration, and molecular weight. J. Phys. Chem. B, 114(14), 4828–4835. DOI:10.1021/jp1002403.. ChiengY. Y. ChenS. B. 2010 Interaction between poly(acrylic acid) and phospholipid vesicles: Effect of pH, concentration, and molecular weight J. Phys. Chem. B 114 14 4828 4835 10.1021/jp1002403 Open DOISearch in Google Scholar

Argentiere, S., Blasi, L., Ciccarella, G., Barbarella, G., Cingolani, R., & Gigli, G. (2010). Nanogels of poly(acrylic acid): Uptake and release behavior with fluorescent oligothiophene-labeled bovine serum albumin. J. Appl. Polym. Sci., 116(5), 2808–2815. DOI: 10.1002/app.31691. ArgentiereS. BlasiL. CiccarellaG. BarbarellaG. CingolaniR. GigliG. 2010 Nanogels of poly(acrylic acid): Uptake and release behavior with fluorescent oligothiophene-labeled bovine serum albumin J. Appl. Polym. Sci. 116 5 2808 2815 10.1002/app.31691 Open DOISearch in Google Scholar

Mackiewicz, M., Stojek, Z., & Karbarz, M. (2019). Synthesis of cross-linked poly(acrylic acid) nanogels in an aqueous environment using precipitation polymerization: unusually high volume change. R. Soc. Open Sci., 6(11), 190981. DOI: 10.1098/rsos.190981. MackiewiczM. StojekZ. KarbarzM. 2019 Synthesis of cross-linked poly(acrylic acid) nanogels in an aqueous environment using precipitation polymerization: unusually high volume change R. Soc. Open Sci. 6 11 190981 10.1098/rsos.190981 Open DOISearch in Google Scholar

Rosiak, J. M., & Ulański, P. (1999). Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat. Phys. Chem., 55(2), 139–151. DOI: 10.1016/S0969-806X(98)00319-3. RosiakJ. M. UlańskiP. 1999 Synthesis of hydrogels by irradiation of polymers in aqueous solution Radiat. Phys. Chem. 55 2 139 151 10.1016/S0969-806X(98)00319-3 Open DOISearch in Google Scholar

Ulanski, P., Kadlubowski, S., & Rosiak, J. M. (2002). Synthesis of poly(acrylic acid) nanogels by preparative pulse radiolysis. Radiat. Phys. Chem., 63(3/6), 533–537. DOI: 10.1016/S0969-806X(01)00549-7. UlanskiP. KadlubowskiS. RosiakJ. M. 2002 Synthesis of poly(acrylic acid) nanogels by preparative pulse radiolysis Radiat. Phys. Chem. 63 3/6 533 537 10.1016/S0969-806X(01)00549-7 Open DOISearch in Google Scholar

Ghaffarlou, M., Sütekin, S. D., & Güven, O. (2018). Preparation of nanogels by radiation-induced cross-linking of interpolymer complexes of poly(acrylic acid) with poly(vinyl pyrrolidone) in aqueous medium. Radiat. Phys. Chem., 142, 130–136. DOI: 10.1016/j.radphyschem.2017.04.019. GhaffarlouM. SütekinS. D. GüvenO. 2018 Preparation of nanogels by radiation-induced cross-linking of interpolymer complexes of poly(acrylic acid) with poly(vinyl pyrrolidone) in aqueous medium Radiat. Phys. Chem. 142 130 136 10.1016/j.radphyschem.2017.04.019 Open DOISearch in Google Scholar

Ghorbaniazar, P., Sepehrianazar, A., Eskandani, M., Nabi-Meibodi, M., Kouhsoltani, M., & Hamishehkar, H. (2015). Preparation of poly acrylic acid-poly acrylamide composite nanogels by radiation technique. Adv. Pharm. Bull., 5(2), 269–275. DOI: 10.15171/apb.2015.037. GhorbaniazarP. SepehrianazarA. EskandaniM. Nabi-MeibodiM. KouhsoltaniM. HamishehkarH. 2015 Preparation of poly acrylic acid-poly acrylamide composite nanogels by radiation technique Adv. Pharm. Bull. 5 2 269 275 10.15171/apb.2015.037 451708026236667 Open DOISearch in Google Scholar

Kadlubowski, S., Ulanski, P., & Rosiak, J. M. (2012). Synthesis of tailored nanogels by means of two-stage irradiation. Polymer, 53(10), 1985–1991. DOI: 10.1016/j.polymer.2012.03.018. KadlubowskiS. UlanskiP. RosiakJ. M. 2012 Synthesis of tailored nanogels by means of two-stage irradiation Polymer 53 10 1985 1991 10.1016/j.polymer.2012.03.018 Open DOISearch in Google Scholar

Henke, A., Kadlubowski, S., Ulanski, P., Rosiak, J. M., & Arndt, K. F. (2005). Radiation-induced cross-linking of polyvinylpyrrolidone-poly(acrylic acid) complexes. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 236, 391–398. DOI: 10.1016/j.nimb.2005.04.003. HenkeA. KadlubowskiS. UlanskiP. RosiakJ. M. ArndtK. F. 2005 Radiation-induced cross-linking of polyvinylpyrrolidone-poly(acrylic acid) complexes Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 236 391 398 10.1016/j.nimb.2005.04.003 Open DOISearch in Google Scholar

Schmidt, T., Janik, I., Kadłubowski, S., Ulański, P., Rosiak, J. M., Reichelt, R., & Arndt, K. -F. (2005). Pulsed electron beam irradiation of dilute aqueous poly(vinyl methyl ether) solutions. Polymer, 46(23), 9908–9918. DOI: 10.1016/j.polymer.2005.07.077. SchmidtT. JanikI. KadłubowskiS. UlańskiP. RosiakJ. M. ReicheltR. ArndtK. -F. 2005 Pulsed electron beam irradiation of dilute aqueous poly(vinyl methyl ether) solutions Polymer 46 23 9908 9918 10.1016/j.polymer.2005.07.077 Open DOISearch in Google Scholar

Kadlubowski, S., Grobelny, J., Olejniczak, W., Cichomski, M., & Ulanski, P. (2003). Pulses of fast electrons as a tool to synthesize poly(acrylic acid) nanogels. Intramolecular cross-linking of linear polymer chains in additive-free aqueous solution. Macromolecules, 36(7), 2484–2492. DOI: 10.1021/ma021628s. KadlubowskiS. GrobelnyJ. OlejniczakW. CichomskiM. UlanskiP. 2003 Pulses of fast electrons as a tool to synthesize poly(acrylic acid) nanogels. Intramolecular cross-linking of linear polymer chains in additive-free aqueous solution Macromolecules 36 7 2484 2492 10.1021/ma021628s Open DOISearch in Google Scholar

Ulanski, P., & Rosiak, J. M. (1999). The use of radiation technique in the synthesis of polymeric nanogels. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 151(1/4), 356–360. DOI: 10.1016/S0168-583X(99)00085-3. UlanskiP. RosiakJ. M. 1999 The use of radiation technique in the synthesis of polymeric nanogels Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 151 1/4 356 360 10.1016/S0168-583X(99)00085-3 Open DOISearch in Google Scholar

Ulański, P., Janik, I., & Rosiak, J. M. (1998). Radiation formation of polymeric nanogels. Radiat. Phys. Chem., 52(1), 289–294. DOI: 10.1016/S0969-806X(98)00155-8. UlańskiP. JanikI. RosiakJ. M. 1998 Radiation formation of polymeric nanogels Radiat. Phys. Chem. 52 1 289 294 10.1016/S0969-806X(98)00155-8 Open DOISearch in Google Scholar

Matusiak, M., Kadlubowski, S., & Ulanski, P. (2018). Radiation-induced synthesis of poly(acrylic acid) nanogels. Radiat. Phys. Chem., 142, 125–129. DOI: 10.1016/j.radphyschem.2017.01.037. MatusiakM. KadlubowskiS. UlanskiP. 2018 Radiation-induced synthesis of poly(acrylic acid) nanogels Radiat. Phys. Chem. 142 125 129 10.1016/j.radphyschem.2017.01.037 Open DOISearch in Google Scholar

Hoshyar, N., Gray, S., Han, H., & Bao, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine, 11(6), 673–692. DOI: 10.2217/nnm.16.5. HoshyarN. GrayS. HanH. BaoG. 2016 The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction Nanomedicine 11 6 673 692 10.2217/nnm.16.5 556179027003448 Open DOISearch in Google Scholar

Mier, W., Babich, J., & Haberkorn, U. (2014). Is nano too big? Eur. J. Nucl. Med. Mol. Imaging, 41(1), 4–6. DOI: 10.1007/s00259-013-2574-9. MierW. BabichJ. HaberkornU. 2014 Is nano too big? Eur. J. Nucl. Med. Mol. Imaging 41 1 4 6 10.1007/s00259-013-2574-9 384374124092264 Open DOISearch in Google Scholar

Ghimire, A., Zore, O. V., Thilakarathne, V. K., Briand, V. A., Lenehan, P. J., Lei, Y., Kasi, R. M., & Kumar, C. V. (2015). “Stable-on-the-table” biosensors: hemoglobin-poly(acrylic acid) nanogel bioelectrodes with high thermal stability and enhanced electroactivity. Sensors, 15(9), 23868–23885. DOI: 10.3390/s150923868. GhimireA. ZoreO. V. ThilakarathneV. K. BriandV. A. LenehanP. J. LeiY. KasiR. M. KumarC. V. 2015 “Stable-on-the-table” biosensors: hemoglobin-poly(acrylic acid) nanogel bioelectrodes with high thermal stability and enhanced electroactivity Sensors 15 9 23868 23885 10.3390/s150923868 461056826393601 Open DOISearch in Google Scholar

World Health Organization (2018). Stability testing of active and finished pharmaceutical products. WHO Expert Committee Preparations for Pharmaceutical on Specifications, Fifty Second Report, Annex 10. WHO. (Technical Report Series No. 1010). World Health Organization 2018 Stability testing of active and finished pharmaceutical products. WHO Expert Committee Preparations for Pharmaceutical on Specifications, Fifty Second Report, Annex 10 WHO (Technical Report Series No. 1010). Search in Google Scholar

Brasch, U., & Burchard, W. (1996). Preparation and solution properties of microhydrogels from poly(vinyl alcohol). Macromol. Chem. Phys., 197(1), 223–235. DOI: 10.1002/macp.1996.021970117. BraschU. BurchardW. 1996 Preparation and solution properties of microhydrogels from poly(vinyl alcohol) Macromol. Chem. Phys. 197 1 223 235 10.1002/macp.1996.021970117 Open DOISearch in Google Scholar

Abdelwahed, W., Degobert, G., & Fessi, H. (2006). A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): Formulation and process optimization. Int. J. Pharm., 309(1/2), 178–188. DOI: 10.1016/j.ijpharm.2005.10.003. AbdelwahedW. DegobertG. FessiH. 2006 A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): Formulation and process optimization Int. J. Pharm. 309 1/2 178 188 10.1016/j.ijpharm.2005.10.003 16326053 Open DOISearch in Google Scholar

Pikal, M. J. (2004). Mechanisms of protein stabilization during freeze-drying and storage: The relative importance of thermodynamic stabilization and glassy state relaxation dynamics. In J. C. May & L. Rey (Eds.), Freeze-drying/lyophilization of pharmaceutical and biological products (pp. 63–107). Boca Raton: CRC Press. PikalM. J. 2004 Mechanisms of protein stabilization during freeze-drying and storage: The relative importance of thermodynamic stabilization and glassy state relaxation dynamics In MayJ. C. ReyL. (Eds.), Freeze-drying/lyophilization of pharmaceutical and biological products 63 107 Boca Raton CRC Press 10.1201/9780203021323.ch3 Search in Google Scholar

eISSN:
1508-5791
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other