Acceso abierto

Radiolytic synthesis of gold nanoparticles in HEMA-based hydrogels: Potentialities for imaging nanocomposites


Cite

Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107(3), 668–677. KellyK. L. CoronadoE. ZhaoL. L. SchatzG. C. 2003 The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment J. Phys. Chem. B 107 3 668 677 10.1021/jp026731y Search in Google Scholar

Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104(1), 293–346. DanielM. C. AstrucD. 2004 Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology Chem. Rev. 104 1 293 346 10.1021/cr030698+14719978 Search in Google Scholar

García, M. A. (2011). Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D-Appl. Phys., 44(28), 283001. GarcíaM. A. 2011 Surface plasmons in metallic nanoparticles: fundamentals and applications J. Phys. D-Appl. Phys. 44 28 283001 10.1088/0022-3727/44/28/283001 Search in Google Scholar

Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discus. Faraday Soc., 11, 55–75. TurkevichJ. StevensonP. C. HillierJ. 1951 A study of the nucleation and growth processes in the synthesis of colloidal gold Discus. Faraday Soc. 11 55 75 10.1039/df9511100055 Search in Google Scholar

Huang, H. H., Yan, F. Q., Kek, Y. M., Chew, C. H., Xu, G. Q., Ji, W., & Tang, S. H. (1997). Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir, 13(2), 172–175. HuangH. H. YanF. Q. KekY. M. ChewC. H. XuG. Q. JiW. TangS. H. 1997 Synthesis, characterization, and nonlinear optical properties of copper nanoparticles Langmuir 13 2 172 175 10.1021/la9605495 Search in Google Scholar

Sato-Berrú, R., Redón, R., Vázquez Olmos, A., & Saniger, J. M. (2009). Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy. J. Raman Spectrosc., 40(4), 376–380. Sato-BerrúR. RedónR. Vázquez OlmosA. SanigerJ. M. 2009 Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy J. Raman Spectrosc. 40 4 376 380 10.1002/jrs.2135 Search in Google Scholar

Sánchez-Iglesias, A., Pastoriza-Santos, I., Pérez-Juste, J., Rodríguez-González, B., Garcia de Abajo, F. J., & Liz-Marzán, L. M. (2006). Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater., 18(19), 2529–2534. Sánchez-IglesiasA. Pastoriza-SantosI. Pérez-JusteJ. Rodríguez-GonzálezB. Garcia de AbajoF. J. Liz-MarzánL. M. 2006 Synthesis and optical properties of gold nanodecahedra with size control Adv. Mater. 18 19 2529 2534 10.1002/adma.200600475 Search in Google Scholar

Belloni, J., Mostafavi, M., Remita, H., Marignier, J. L., & Delcourt, M. O. (1998). Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids. New J. Chem., 22(11), 1239–1255. BelloniJ. MostafaviM. RemitaH. MarignierJ. L. DelcourtM. O. 1998 Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids New J. Chem. 22 11 1239 1255 10.1039/a801445k Search in Google Scholar

Abedini, A., Daud, A. R., Hamid, M. A. A., Othman, N. K., & Saion, E. (2013). A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett., 8(1), 474. AbediniA. DaudA. R. HamidM. A. A. OthmanN. K. SaionE. 2013 A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles Nanoscale Res. Lett. 8 1 474 10.1186/1556-276X-8-474383158724225302 Search in Google Scholar

Henglein, A. (1999). Radiolytic preparation of ultra-fine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir, 15(20), 6738–6744. HengleinA. 1999 Radiolytic preparation of ultra-fine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions Langmuir 15 20 6738 6744 10.1021/la9901579 Search in Google Scholar

Gachard, E., Remita, H., Khatouri, J., Keita, B., Nadjo, L., & Belloni, J. (1998). Radiation-induced and chemical formation of gold clusters. New J. Chem., 22(11), 1257–1265. GachardE. RemitaH. KhatouriJ. KeitaB. NadjoL. BelloniJ. 1998 Radiation-induced and chemical formation of gold clusters New J. Chem. 22 11 1257 1265 10.1039/a804445g Search in Google Scholar

Tagawa, S., Hayashi, N., Yoshida, Y., Washio, M., & Tabata, Y. (1989). Pulse radiolysis studies on liquid alkanes and related polymers. Int. J. Radiat. Appl. Instrum. C-Radiat. Phys. Chem., 34(4), 503–511. TagawaS. HayashiN. YoshidaY. WashioM. TabataY. 1989 Pulse radiolysis studies on liquid alkanes and related polymers Int. J. Radiat. Appl. Instrum. C-Radiat. Phys. Chem. 34 4 503 511 10.1016/1359-0197(89)90053-2 Search in Google Scholar

Kapoor, S., Lawless, D., Kennepohl, P., Meisel, D., & Serpone, N. (1994). Reduction and aggregation of silver ions in aqueous gelatin solutions. Langmuir, 10(9), 3018–3022. KapoorS. LawlessD. KennepohlP. MeiselD. SerponeN. 1994 Reduction and aggregation of silver ions in aqueous gelatin solutions Langmuir 10 9 3018 3022 10.1021/la00021a026 Search in Google Scholar

Goldenberg, L. M., Sakhno, O. V., Smirnova, T. N., Helliwell, P., Chechik, V., & Stumpe, J. (2008). Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation. Chem. Mat., 20(14), 4619–4627. GoldenbergL. M. SakhnoO. V. SmirnovaT. N. HelliwellP. ChechikV. StumpeJ. 2008 Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation Chem. Mat. 20 14 4619 4627 10.1021/cm8005315 Search in Google Scholar

Pardo Yissar, V., Gabai, R., Shipway, A. N., Bourenko, T., & Willner, I. (2001). Gold nanoparticle/hydrogel composites with solvent switchable electronic properties. Adv. Mater., 13(17), 1320–1323. Pardo YissarV. GabaiR. ShipwayA. N. BourenkoT. WillnerI. 2001 Gold nanoparticle/hydrogel composites with solvent switchable electronic properties Adv. Mater. 13 17 1320 1323 10.1002/1521-4095(200109)13:17<1320::AID-ADMA1320>3.0.CO;2-8 Search in Google Scholar

Wang, C., Flynn, N. T., & Langer, R. (2004). Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv. Mater., 16(13), 1074–1079. WangC. FlynnN. T. LangerR. 2004 Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites Adv. Mater. 16 13 1074 1079 10.1002/adma.200306516 Search in Google Scholar

Marić, I., Vujičić, N. Š., Pustak, A., Gotić, M., & Jurkin, T. (2020). One-step synthesis of poly (ethylene oxide)/gold nanocomposite hydrogels and suspensions using gamma-irradiation. Radiat. Phys. Chem., 170, 108657. MarićI. VujičićN. Š. PustakA. GotićM. JurkinT. 2020 One-step synthesis of poly (ethylene oxide)/gold nanocomposite hydrogels and suspensions using gamma-irradiation Radiat. Phys. Chem. 170 108657 10.1016/j.radphyschem.2019.108657 Search in Google Scholar

Bond, G. C., & Thompson, D. T. (2000). Goldcatalysed oxidation of carbon monoxide. Gold Bull., 33(2), 41–50. BondG. C. ThompsonD. T. 2000 Goldcatalysed oxidation of carbon monoxide Gold Bull. 33 2 41 50 10.1007/BF03216579 Search in Google Scholar

Belloni, J. (2006). Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal. Today, 113(3/4), 141–156. BelloniJ. 2006 Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis Catal. Today 113 3/4 141 156 10.1016/j.cattod.2005.11.082 Search in Google Scholar

Evanoff Jr, D. D., & Chumanov, G. (2005). Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem, 6(7), 1221–1231. EvanoffD. D.Jr ChumanovG. 2005 Synthesis and optical properties of silver nanoparticles and arrays ChemPhysChem 6 7 1221 1231 10.1002/cphc.200500113 Search in Google Scholar

Vô, K. D. N., Kowandy, C., Dupont, L., & Coqueret, X. (2015). Evidence of chitosan-mediated reduction of Au(III) to Au(0) nanoparticles under electron beam by using OH and eaq scavengers. Chem. Commun., 51(19), 4017–4020. K. D. N. KowandyC. DupontL. CoqueretX. 2015 Evidence of chitosan-mediated reduction of Au(III) to Au(0) nanoparticles under electron beam by using OH and eaq scavengers Chem. Commun. 51 19 4017 4020 10.1039/C4CC09346A Search in Google Scholar

Li, T., Park, H. G., & Choi, S. H. (2007). γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater. Chem. Phys., 105(2/3), 325–330. LiT. ParkH. G. ChoiS. H. 2007 γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations Mater. Chem. Phys. 105 2/3 325 330 10.1016/j.matchemphys.2007.04.069 Search in Google Scholar

Zhu, C. -H., Hai, Z. -B., Cui, C. -H., Li, H. -H., Chen, J. -F., & Yu, S. -H. (2012). In situ controlled synthesis of thermosensitive poly(N-isopropylacrylamide)/Au nanocomposite hydrogels by gamma radiation for catalytic application. Small, 8(6), 930–936. ZhuC. -H. HaiZ. -B. CuiC. -H. LiH. -H. ChenJ. -F. YuS. -H. 2012 In situ controlled synthesis of thermosensitive poly(N-isopropylacrylamide)/Au nanocomposite hydrogels by gamma radiation for catalytic application Small 8 6 930 936 10.1002/smll.20110206022271613 Search in Google Scholar

Kumaraswamy, S., & Mallaiah, S. H. (2016). Swelling and mechanical properties of radiation crosslinked Au/PVA hydrogel nanocomposites. Radiat. Eff. Defects Solids, 171(11/12), 869–878. KumaraswamyS. MallaiahS. H. 2016 Swelling and mechanical properties of radiation crosslinked Au/PVA hydrogel nanocomposites Radiat. Eff. Defects Solids 171 11/12 869 878 10.1080/10420150.2016.1250095 Search in Google Scholar

Kumaraswamy, S., Srikanth, L. P., & Somashekarappa, H. M. (2020). Swelling and cytocompatibility studies of Au/PVA hydrogel nanocomposites synthesized using gamma irradiation technique. AIP Conf. Proc., 2244, art. no. 070005. KumaraswamyS. SrikanthL. P. SomashekarappaH. M. 2020 Swelling and cytocompatibility studies of Au/PVA hydrogel nanocomposites synthesized using gamma irradiation technique AIP Conf. Proc. 2244 art. no. 070005. 10.1063/5.0009546 Search in Google Scholar

Kumar, M., Varshney, L., & Francis, S. (2005). Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix. Radiat. Phys. Chem., 73(1), 21–27. KumarM. VarshneyL. FrancisS. 2005 Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix Radiat. Phys. Chem. 73 1 21 27 10.1016/j.radphyschem.2004.06.006 Search in Google Scholar

Henríquez, C. M. G., Guerra, G. D. C. P., Vallejos, M. A. S., de la Fuente, S. D. R., Flores, M. T. U., & Jimenez, L. M. R. (2014). In situ silver nanoparticle formation embedded into a photopolymerized hydrogel with biocide properties. J. Nanostructure Chem., 4(4), 119–132. HenríquezC. M. G. GuerraG. D. C. P. VallejosM. A. S. de la FuenteS. D. R. FloresM. T. U. JimenezL. M. R. 2014 In situ silver nanoparticle formation embedded into a photopolymerized hydrogel with biocide properties J. Nanostructure Chem. 4 4 119 132 10.1007/s40097-014-0125-y Search in Google Scholar

Krklješ, A. N., Marinović-Cincović, M. T., Kacarevic-Popovic, Z. M., & Nedeljković, J. M. (2007). Radiolytic synthesis and characterization of Ag-PVA nanocomposites. Eur. Polym. J., 43(6), 2171–2176. KrklješA. N. Marinović-CincovićM. T. Kacarevic-PopovicZ. M. NedeljkovićJ. M. 2007 Radiolytic synthesis and characterization of Ag-PVA nanocomposites Eur. Polym. J. 43 6 2171 2176 10.1016/j.eurpolymj.2007.03.023 Search in Google Scholar

Krklješ, A., Nedeljković, J. M., & Kačarević-Popović, Z. M. (2007). Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation. Polymer Bull., 58(1), 271–279. KrklješA. NedeljkovićJ. M. Kačarević-PopovićZ. M. 2007 Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation Polymer Bull. 58 1 271 279 10.1007/s00289-006-0593-4 Search in Google Scholar

Jovanović, Ž., Krklješ, A., Stojkovska, J., Tomić, S., Obradović, B., Mišković-Stanković, V., & Kačarević-Popović, Z. (2011). Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiat. Phys. Chem., 80(11), 1208–1215. JovanovićŽ. KrklješA. StojkovskaJ. TomićS. ObradovićB. Mišković-StankovićV. Kačarević-PopovićZ. 2011 Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method Radiat. Phys. Chem. 80 11 1208 1215 10.1016/j.radphyschem.2011.06.005 Search in Google Scholar

Schulz, G. V., & Harborth, G. (1947). The mechanism of the explosive polymerization of methyl methacrylate. Die Makromolekulare Chemie, 1(1), 106–139. SchulzG. V. HarborthG. 1947 The mechanism of the explosive polymerization of methyl methacrylate Die Makromolekulare Chemie 1 1 106 139 10.1002/macp.1947.020010110 Search in Google Scholar

Flory, P. J. (1953). Principles of polymer chemistry. Ithaca, NY: Cornell University Press. FloryP. J. 1953 Principles of polymer chemistry Ithaca, NY Cornell University Press Search in Google Scholar

Campan, R., Cazaux, F., & Coqueret, X. (2002). Controlled swelling of poly(hydroxyethyl methacrylate) hydrogels by photochemical grafting of hydrophobic acrylates. Macromol. Mater. Eng., 287(12), 924–930. CampanR. CazauxF. CoqueretX. 2002 Controlled swelling of poly(hydroxyethyl methacrylate) hydrogels by photochemical grafting of hydrophobic acrylates Macromol. Mater. Eng. 287 12 924 930 10.1002/mame.200290026 Search in Google Scholar

Olejniczak, J., Rosiak, J., & Charlesby, A. (1991). Gel/dose curves for polymers undergoing simultaneous crosslinking and scission. Radiat. Phys. Chem., 37(3), 499–504. OlejniczakJ. RosiakJ. CharlesbyA. 1991 Gel/dose curves for polymers undergoing simultaneous crosslinking and scission Radiat. Phys. Chem. 37 3 499 504 10.1016/1359-0197(91)90026-X Search in Google Scholar

Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solutions. J. Phys. Chem. Ref. Data, 17(2), 513–886. BuxtonG. V. GreenstockC. L. HelmanW. P. RossA. B. 1988 Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solutions J. Phys. Chem. Ref. Data 17 2 513 886 10.1063/1.555805 Search in Google Scholar

Ilavský, M., Fähnrich, J., Nedbal, J., & Bouchal, K. (1996). Swelling and photoelastic behaviour of ionized hydrogels of poly(acrylic acid). Polymer Bull., 37, 791–798. IlavskýM. FähnrichJ. NedbalJ. BouchalK. 1996 Swelling and photoelastic behaviour of ionized hydrogels of poly(acrylic acid) Polymer Bull. 37 791 798 10.1007/BF00295779 Search in Google Scholar

Serjeant, E. P., & Dempsey, B. (1979). Ionisation constants of organic acids in aqueous solution. New York: Pergamon Press. (IUPAC Chemical Data Series No. 23). SerjeantE. P. DempseyB. 1979 Ionisation constants of organic acids in aqueous solution New York Pergamon Press (IUPAC Chemical Data Series No. 23). Search in Google Scholar

Oosawa, F. (1971). Polyelectrolytes. New York: Marcel Dekker. OosawaF. 1971 Polyelectrolytes New York Marcel Dekker Search in Google Scholar

Schild, H. G., & Tirrell, D. A. (1990). Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J. Phys. Chem., 94, 4352–4356. SchildH. G. TirrellD. A. 1990 Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions J. Phys. Chem. 94 4352 4356 10.1021/j100373a088 Search in Google Scholar

Alexander, P., Charlesby, A., & Ross, M. (1954). The degradation of solid polymethylmethacrylate by ionizing radiation. Proc. R. Soc. London Ser. A-Math. Phys. Sci., 223(1154), 392–404. AlexanderP. CharlesbyA. RossM. 1954 The degradation of solid polymethylmethacrylate by ionizing radiation Proc. R. Soc. London Ser. A-Math. Phys. Sci. 223 1154 392 404 Search in Google Scholar

Choi, J. O., Moore, J. A., Corelli, J. C., Silverman, J. P., & Bakhru, H. (1988). Degradation of poly(methyl methacrylate) by deep ultraviolet, X-ray, electron beam, and proton beam irradiations. J. Vac. Sci. Technol. B, 6(6), 2286–2289. ChoiJ. O. MooreJ. A. CorelliJ. C. SilvermanJ. P. BakhruH. 1988 Degradation of poly(methyl methacrylate) by deep ultraviolet, X-ray, electron beam, and proton beam irradiations J. Vac. Sci. Technol. B 6 6 2286 2289 10.1116/1.584071 Search in Google Scholar

Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release, 5(1), 23–36. RitgerP. L. PeppasN. A. 1987 A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs J. Control. Release 5 1 23 36 10.1016/0168-3659(87)90034-4 Search in Google Scholar

Dey, G. R., El Omar, A. K., Jacob, J. A., Mostafavi, M., & Belloni, J. (2011). Mechanism of trivalent gold reduction and reactivity of transient divalent and monovalent gold ions studied by gamma and pulse radiolysis. J. Phys.Chem. A, 115, 383–391. DeyG. R. El OmarA. K. JacobJ. A. MostafaviM. BelloniJ. 2011 Mechanism of trivalent gold reduction and reactivity of transient divalent and monovalent gold ions studied by gamma and pulse radiolysis J. Phys.Chem. A 115 383 391 10.1021/jp109659721174474 Search in Google Scholar

eISSN:
1508-5791
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other