Cite

1. Lario, J., Sánchez-Moral, S., Cañaveras, J. C., Cuezva, S., & Soler, V. (2005). Radon continuous monitoring in Altamira Cave (northern Spain) to assess user’s annual effective dose. J. Environ. Radioact., 80, 161–174. DOI: 10.1016/j.jenvrad.2004.06.007.10.1016/j.jenvrad.2004.06.007Search in Google Scholar

2. Thinová, L., & Burian, I. (2008). Effective dose assessment for workers in caves in the Czech Republic: Experiments with passive radon detectors. Radiat. Prot. Dosim., 130(1), 48–51. DOI: 10.1093/rpd/ncn118.10.1093/rpd/ncn118Search in Google Scholar

3. Alvarez-Gallego, M., Garcia-Anton, E., Fernandez-Cortez, A., Cuezva, S., & Sanchez-Moral, S. (2015). High radon levels in subterranean environments: monitoring and technical criteria to ensure human safety (case of Castañar cave, Spain). J. Environ. Radioact., 145, 19–29. DOI: 10.1016/j. jenvrad.2015.03.024.Search in Google Scholar

4. Somlai, J., Hakl, J., Kavasi, N., Szeiler, G., Szabo, P., & Kovacs, T. (2011). Annual average radon concentration in the show caves of Hungary. J. Radioanal. Nucl. Chem., 287, 427–433. DOI: 10.1007/s10967-010-0841-9.10.1007/s10967-010-0841-9Search in Google Scholar

5. Przylibski, T. A. (1999). Radon concentration changes in the air of two caves in Poland. J. Environ. Radioact., 45, 81–94.10.1016/S0265-931X(98)00081-2Search in Google Scholar

6. Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (1999). 222Rn concentrations, natural flow rate and the radiation exposure levels in the Nerja Cave. Atmos. Environ., 33, 501–510.10.1016/S1352-2310(98)00267-2Search in Google Scholar

7. Lu, X., Li, L.Y., & Zhang, X. (2009). An environmental risk assessment of radon in Lantian Karst Cave of Shaanxi, China. Water Air Soil Pollut., 198, 307–316. DOI: 10.1007/s11270-008-9847-0.10.1007/s11270-008-9847-0Search in Google Scholar

8. Bahtijari, M., Vaupotič, J., Gregorič, A., Stegnar, P., & Kobal, I. (2008). Exposure to radon in the Gadime Cave, Kosovo. J. Environ. Radioact., 99, 343–348. DOI: 10.1016/j.jenvrad.2007.08.003.10.1016/j.jenvrad.2007.08.00317904705Search in Google Scholar

9. Barbosa, S. M., Zafrir, H., Malik, U., & Piatibratova, O. (2010). Multi-year to daily radon variability from continuous monitoring at the Amram tunnel, southern Israel. Geophys. J. Int., 182, 829–842. DOI: 10.1111/j.1365-246X.2010.04660.x.10.1111/j.1365-246X.2010.04660.xSearch in Google Scholar

10. Gregorič, A., Zidanšek, A., & Vaupotič, J. (2011). Dependence of radon levels in Postojna Cave on outside air temperature. Nat. Hazards Earth Syst. Sci., 11, 1523–1528. DOI: 10.5194/nhess-11-1523-2011.10.5194/nhess-11-1523-2011Search in Google Scholar

11. Gregorič, A., Zidanšek, A., & Vaupotič, J. (2013). Reasons for large fluctuation of radon and CO2 levels in a dead-end passage of a karst cave (Postojna Cave, Slovenia). Nat. Hazards Earth Syst. Sci., 13, 287–297. DOI: 10.5194/nhess-13-287-201310.5194/nhess-13-287-2013Search in Google Scholar

12. Hakl, J., Csige, I., & Hunyadi, I. (1996). Radon transport in fractured porous media – experimental study in caves. Environ. Int., 22, S433–S437.10.1016/S0160-4120(96)00143-2Search in Google Scholar

13. Fernandez-Cortes, A., Sanchez-Moral, S., Cuezva, S., Cañaveras, J. C., & Abella, R. (2009). Annual and transient signatures of gas exchange and transport in the Castañar de Ibor cave (Spain). Int. J. Speleol., 38(2), 153–162.10.5038/1827-806X.38.2.6Search in Google Scholar

14. Kowalczk, A. J., & Froelich, P. N. (2010). Cave air ventilation and CO2 outgassing by radon-222 modelling: how fast do the caves breathe? Earth Planet. Sci. Lett., 2899, 209–219. DOI: 10.1016/j.epsl.2009.11.010.10.1016/j.epsl.2009.11.010Search in Google Scholar

15. Milanolo, S., & Gabrovšek, F. (2009). Analysis of carbon dioxide variations in the atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina. Bound-Lay. Meteorol., 131, 479–493. DOI: 10.1007/s10546-009-9375-5.10.1007/s10546-009-9375-5Search in Google Scholar

16. Faimon, J., Štelcl, J., & Sas, D. (2006). Anthropogenic CO2-flux into cave atmosphere and its environmental impact: A case study in the Císařská Cave (Moravian Karst, Czech Republic). Sci. Total Environ., 369, 231–245.10.1016/j.scitotenv.2006.04.00616750843Search in Google Scholar

17. Droppa, A. (1962a). Speleologický výskum Važeckého krasu (Speleological research of Važec karst area). Geografical Journal, 14(4), 264–293.Search in Google Scholar

18. Droppa, A. (1962b). Važecká jaskyňa a krasové javy v okolí (Važecká Cave and karst phenomena in surrounding area). Bratislava, Slovakia: Šport.Search in Google Scholar

19. Bella, P., Littva, J., Pruner, P., Bosák, P., Šlechta, S., Hercman, H., & Čížiková, K. (2016). Geologická stavba, morfológia a vývoj Važeckej jaskyne (Geological setting, morphology and evolution of the Važecká Cave, Slovakia). Acta Carsologica Slovaca, 54(1), 5–31.Search in Google Scholar

20. Zelinka, J. (2002). Termodynamická charakteristika Važeckej jaskyne (Termodynamic characterization of the Važecká Cave). In Výskum, využívanie a ochrana jaskýň, Zborník referátov z 3. Vedeckej konferencie, (Investiagation, protection and using of caves, conference proceedings), 14–16 November, 2001 (pp. 123–131). SSJ, Žilina, Slovakia: Liptovský Mikuláš Knižné centrum.Search in Google Scholar

eISSN:
0029-5922
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other