Acceso abierto

Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag–Cement Sediments


Cite

1. Callister W D Jr & Rethwisch D G: “Materials Science & Engineering an Introduction”. New York: John Wiley & Sons, 2018. Search in Google Scholar

2. Groover M P: “Fundamentals of Modern Manufacturing: Materials, Processes, and Systems”. (7th ed). New York, U.S.A: John Wiley & Sons, 2019. Search in Google Scholar

3. Yin B, Wu C, Hou D, Li S, Jin Z, Wang M & Wang X: “Research and application progress of nano-modified coating in improving the durability of cement-based materials”. Progress in Organic Coatings, Vol. 161 (106529), 2021.10.1016/j.porgcoat.2021.106529 Search in Google Scholar

4. Research and Markets: “Global Cement Market (2021 to 2026) - Industry Trends, Share, Size, Growth, Opportunity and Forecasts”, 2021.10.1016/j.focat.2021.07.011 Search in Google Scholar

5. Andersson L, Silfwerbrand J, Selander A & Trägårdh J: “Continuous Preventive Bridge Maintenance of Swedish Municipalities – A Survey on Common Practice”. Nordic Concrete Research, No. 58(1), 2018, pp. 127–142.10.2478/ncr-2018-0008 Search in Google Scholar

6. Jalonen K, Tulonen J & Laaksonen A: “Influence of Cracking on Effects of Restrained Deformations in a Post-tensioned Concrete Bridge”. Nordic Concrete Research, No. 59(1), 2018, pp. 95–110.10.2478/ncr-2018-0017 Search in Google Scholar

7. Mattsson H-Ä, Sundquist H & Silfwerbrand J: “The Real Service Life and Repair Costs for Bridge Edge Beams / Die reale Nutzungsdauer und Reparaturkosten für Brückenkappen”. Restoration of Buildings and Monuments, Vol. 13, no. 4, 2007, pp. 215-228.10.1515/rbm-2007-6140 Search in Google Scholar

8. Veganzones J J, Pacoste C & Karoumi R: “Width and Edge Beam Effects on the Ultimate Behaviour of RC Bridge Overhangs”. Nordic Concrete Research, No. 61(2), 2019, pp. 131–152.10.2478/ncr-2019-0015 Search in Google Scholar

9. SIS: “Methods of testing cement – Part 1: Determination of strength. Swedish Institute for Standards. Swedish standard SS-EN 196-1:2016”. Swedish Institute for Standards, 2021. Search in Google Scholar

10. Ahmed L: “Dynamic Measurements for Determining Poisson’s Ratio of Young Concrete”. Nordic Concrete Research, No. 58(1), 2018, pp. 95–106.10.2478/ncr-2018-0006 Search in Google Scholar

11. Sadagopan M, Malaga K, Lundin M & Nagy A: “Effects of Slag Addition and Mechanical Pre-Processing on the Properties of Recycled Concrete in Terms of Compressive Strength and Workability”. Nordic Concrete Research, No. 64(1), 2021, pp. 11–29.10.2478/ncr-2020-0018 Search in Google Scholar

12. Nielsen C V & Kaasgaard M: “Activation Energy for the Concrete Maturity Model – Part 1: Compressive Strength Tests at Different Curing Temperatures”. Nordic Concrete Research, No. 62(1), 2020, pp. 87–106.10.2478/ncr-2020-0002 Search in Google Scholar

13. Dahlin T, Svensson M & Lindh P: “DC Resistivity and SASW for Validation of Efficiency in Soil Stabilisation Prior to Road Construction”. In: Proceedings EEGS’99, Budapest, Hungary, 6-9 September 1999, pp. 1–3.10.3997/2214-4609.201406466 Search in Google Scholar

14. Mohaghegh A M, Silfwerbrand J & Årskog V: Shear behavior of high-performance basalt fiber concrete—Part II: Laboratory punching shear tests on small slabs with macrofibers without bars. Structural Concrete, Vol. 19, 2018, pp. 331–339.10.1002/suco.201700207 Search in Google Scholar

15. Lindh P & Winter M G: “Sample preparation effects on the compaction properties of Swedish fine-grained tills”. Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 36, No. 4, 2003, pp. 321–330.10.1144/1470-9236/03-018 Search in Google Scholar

16. Lindh P: “Mcv and shear strength of compacted fine-grained tills”. In: Proceedings 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering. 4–8 August 2003, Singapore, 2003, pp. 493–496. Search in Google Scholar

17. Lindh P: “Compaction- and strength properties of stabilized and unstabilized fine-grained tills”. ISRN: LUTVDG/TVGT-1013–SE (PhD Thesis). Lund University, Lund, Sweden, 2004, 319 pp. Search in Google Scholar

18. Chang T P, Lin H C, Chang W T & Hsiao J F: “Engineering properties of lightweight aggregate concrete assessed by stress wave propagation methods”. Cement and Concrete Composites, Vol. 28, No. 1, 2006, pp. 57-68.10.1016/j.cemconcomp.2005.08.003 Search in Google Scholar

19. Yang Y, Zhou Q, Li X, Lum G C & Deng Y: “Uniaxial compression mechanical property and fracture behavior of hybrid inorganic short mineral fibers reinforced cement-based material”. Cement and Concrete Composites, Vol. 104, 2019.10.1016/j.cemconcomp.2019.103338 Search in Google Scholar

20. Madhusudhan B N, Clayton C R I & Priest J A: (2019). “The effects of hydrate on the strength and stiffness of some sands”. Journal of Geophysical Research: Solid Earth, Vol. 124, pp. 65–75.10.1029/2018JB015880 Search in Google Scholar

21. Bharadwaj K, Ghantous R M, Sahan F, Isgor O B & Weiss W J: “Predicting pore volume, compressive strength, pore connectivity, and formation factor in cementitious pastes containing fly ash”. Cement and Concrete Composites, Vol. 122, 2021.10.1016/j.cemconcomp.2021.104113 Search in Google Scholar

22. Wang B & Gupta R: “Analyzing bond-deterioration during freeze-thaw exposure in cement-based repairs using non-destructive methods”. Cement and Concrete Composites, Vol. 115, 2021.10.1016/j.cemconcomp.2020.103830 Search in Google Scholar

23. Lindh P, Ryden N & Ekdah U: “Comparison between unconfined compression test and free– free resonant column test”. In: Proceedings of 2nd symposium (TREMTI), Paris, France, 2005. Search in Google Scholar

24. Rydén N, Ekdahl U & Lindh P: “Quality Control of Cement stabilized Soil using Non-Destructive Seismic Tests”. In: Conference Proceedings. Advanced Testing of Fresh Cementitious Materials. August 3-4, 2006, Stuttgart, Germany, 2006, pp. 1-5. Search in Google Scholar

25. Trtnik G & Turk G: “Influence of superplasticizers on the evolution of ultrasonic P-wave velocity through cement pastes at early age”. Cement and Concrete Research, Vol. 51, 2013, pp. 22-31.10.1016/j.cemconres.2013.04.007 Search in Google Scholar

26. TenCate J A, Malcolm A E, Feng X & Fehler M C: “The effect of crack orientation on the nonlinear interaction of a P wave with an S wave”. Geophysical Research Letters, Vol. 43, 2016, pp. 6146–6152.10.1002/2016GL069219 Search in Google Scholar

27. Ryden N, Dahlen U, Lindh P & Jakobsson A: “Impact non-linear reverberation spectroscopy applied to non-destructive testing of building materials”. The Journal of the Acoustical Society of America, Vol. 140, No. 4, 2016, pp. 3327-3327.10.1121/1.4970601 Search in Google Scholar

28. Yan B, Zhu W, Hou C, Yilmaz E & Saadat M: “Characterization of early age behavior of cemented paste backfill through the magnitude and frequency spectrum of ultrasonic P-wave”. Construction and Building Materials, Vol. 249, 2020.10.1016/j.conbuildmat.2020.118733 Search in Google Scholar

29. Halliday D, Resnick R & Walker J: “Fundamentals of Physics”. Part 2. (7th ed.). New York: John Wiley & Sons Ltd, 2005. Search in Google Scholar

30. Červený V: “Seismic Ray Theory”. Cambridge, UK: Cambridge University Press, 2001. Search in Google Scholar

31. Lay T & Wallace T C: “Modern Global Seismology”. San Diego: Academic Press, 1995. Search in Google Scholar

32. Åhnberg H & Holmén M: “Assessment of stabilized soil strength with geophysical methods”. Ground Improvement, Vol. 164, No. 3, 2011, pp. 109–116.10.1680/grim.2011.164.3.109 Search in Google Scholar

33. Verástegui-Flores R D, Di Emidio G, Bezuijen A, Vanwalleghem J & Kersemans M: “Evaluation of the free–free resonant frequency method to determine stiffness moduli of cement-treated soil”. Soils and Foundations, Vol. 55, No. 5, 2015, pp. 943-950.10.1016/j.sandf.2015.09.001 Search in Google Scholar

34. Han T, Gurevich B, Pervukhina M, Clennell M B & Zhang J: “Linking the pressure dependency of elastic and electrical properties of porous rocks by a dual porosity model”. Geophysical Journal International, Vol. 205, No. 1, 2016, pp. 378–388.10.1093/gji/ggw019 Search in Google Scholar

35. Chand S, Minshull T A, Priest J A, Best A I, Clayton C R I & Waite W F: “An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments”. Geophysical Journal International, Vol. 166, No. 2, 2006, pp. 543–552.10.1111/j.1365-246X.2006.03038.x Search in Google Scholar

36. Yoneda J, Jin Y, Katagiri J & Tenma N: “Strengthening mechanism of cemented hydrate-bearing sand at microscales”. Geophysical Research Letters, Vol. 43, 2016, pp. 7442–7450.10.1002/2016GL069951 Search in Google Scholar

37. Pan H, Li H, Chen J, Zhang Y, Cai S, Huang Y, Zheng Y, Zhao Y & Deng J: “A unified contact cementation theory for gas hydrate morphology detection and saturation estimation from elastic-wave velocities”. Marine and Petroleum Geology, Vol. 113, 2020.10.1016/j.marpetgeo.2019.104146 Search in Google Scholar

38. Kim H S, Cho G C & Kwon T H: “Effect of CO2 hydrate formation on seismic wave velocities of fine-grained sediments”. Geochemistry, Geophysics, Geosystems, Vol. 14, 2013, pp. 1787–1799.10.1002/ggge.20102 Search in Google Scholar

39. Khaksar A, Griffiths & McCann C: “Compressional- and shear-wave velocities as a function of confining stress in dry sandstones”. Geophysical Prospecting, Vol. 47, 1999, pp. 487-508.10.1046/j.1365-2478.1999.00146.x Search in Google Scholar

40. Yun T S, Francisca F M, Santamarina J C & Ruppel C: “Compressional and shear wave velocities in uncemented sediment containing gas hydrate”. Geophysical Research Letters, Vol. 32, No. L10609, 2005.10.1029/2005GL022607 Search in Google Scholar

41. Lindh P, Dahlin T & Svensson M: “Comparisons between different test methods for soil stabilisation”. In: Proceedings of the ISRM International Symposium 2000, IS 2000; Melbourne; Australia; 19-24 November 2000, Code 139306, pp. 1–5. Search in Google Scholar

42. Zhu H, Yu H, Ma H & Yang S: “Uniaxial compressive stress-strain curves of magnesium oxysulfate cement concrete”. Construction and Building Materials, 232, 2020.10.1016/j.conbuildmat.2019.117244 Search in Google Scholar

43. Frias Lopez R, Ekblad J & Silfwerbrand J: Resilient properties of binary granular mixtures: A numerical investigation. Computers and Geotechnics, Vol. 76, 2016, pp. 222–233.10.1016/j.compgeo.2016.03.002 Search in Google Scholar

44. Horii H & Nemat-Nasser S: “Compression-Induced Microcrack Growth in Brittle Solids: Axial Splitting and Shear Failure”. Journal of Geophysical Research, Vol. 90, No. B4, 1985, pp. 3105-3125.10.1029/JB090iB04p03105 Search in Google Scholar

45. Hazzard J F & Young R P: “Numerical investigation of induced cracking and seismic velocity changes in brittle rock”. Geophysical Research Letters, Vol. 31, 2004.10.1029/2003GL019190 Search in Google Scholar

46. Wang H, Binder E, Mang H, Yuan Y & Pichler B: “Multiscale structural analysis inspired by exceptional load cases concerning the immersed tunnel of the Hong Kong-Zhuhai-Macao Bridge”. Underground Space, Vol. 3, No. 4, 2018, pp. 252-267.10.1016/j.undsp.2018.02.001 Search in Google Scholar

47. Zhang W, Han L, Gu X, Wang L, Chen F & Liu H: “Tunneling and deep excavations in spatially variable soil and rock masses: A short review”. Underground Space, 2020.10.1016/j.undsp.2020.03.003 Search in Google Scholar

48. Larsen I L, Terjesen O, Thorstensen R T & Kanstad T: “Use of Concrete for Road Infrastructure: A SWOT Analysis Related to the three Catchwords Sustainability, Industrialisation and Digitalisation”. Nordic Concrete Research, No. 60(1), 2019, pp. 31–50.10.2478/ncr-2019-0007 Search in Google Scholar

49. Chung C W, Suraneni P, Popovics J S & Struble L J: “Using ultrasonic wave reflection to monitor false set of cement paste”. Cement and Concrete Composites, Vol. 84, 2017, pp. 10-18.10.1016/j.cemconcomp.2017.08.010 Search in Google Scholar

50. Palomar I & Barluenga G: “Assessment of lime-cement mortar microstructure and properties by P- and S- ultrasonic waves”. Construction and Building Materials, Vol. 139, 2017, pp. 334-341.10.1016/j.conbuildmat.2017.02.083 Search in Google Scholar

51. Lootens D, Schumacher M, Liard M, Jones S Z, Bentz D P, Ricci S & Meacci V: “Continuous strength measurements of cement pastes and concretes by the ultrasonic wave reflection method”. Construction and Building Materials, Vol. 242, 2020.10.1016/j.conbuildmat.2019.117902 Search in Google Scholar

52. Miró M, Eiras J N, Poveda P, Climent M Á & Ramis J: “Detecting cracks due to steel corrosion in reinforced cement mortar using intermodulation generation of ultrasonic waves”. Construction and Building Materials, Vol. 286, 2021.10.1016/j.conbuildmat.2021.122915 Search in Google Scholar

53. Han Z, Li D, Zhou T, Zhu Q & Ranjith P G: “Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses”. International Journal of Rock Mechanics and Mining Sciences, Vol. 131, 2020.10.1016/j.ijrmms.2020.104352 Search in Google Scholar

54. Lagarde J, Abraham O, Laguerre L, Côte P, Piguet J P, Balland C & Armand G: “Use of surface waves and seismic refraction for the inspection of circular concrete structures”. Cement and Concrete Composites, Vol. 28, No. 4, 2006, pp. 337-348.10.1016/j.cemconcomp.2006.02.014 Search in Google Scholar

55. Niederleithinger E & Taffe A: “Early stage elastic wave velocity of concrete piles”. Cement and Concrete Composites, Vol. 28, No. 4, 2006, pp. 317-320.10.1016/j.cemconcomp.2006.02.013 Search in Google Scholar

56. Trtnik G & Gams M: (2013). “The use of frequency spectrum of ultrasonic P-waves to monitor the setting process of cement pastes”. Cement and Concrete Research, Vol. 43, pp. 1-11.10.1016/j.cemconres.2012.10.002 Search in Google Scholar

57. Sleep N H & Erickson B A: “Nonlinear attenuation of S-waves and Love waves within ambient rock”. Geochemistry, Geophysics, Geosystems, Vol. 15, 2014, pp. 1419–1440.10.1002/2014GC005250 Search in Google Scholar

58. Zhan L & Matsushima J: “Frequency-dependent P-wave attenuation in hydrate-bearing sediments: a rock physics study at Nankai Trough, Japan”. Geophysical Journal International, Vol. 214, No. 3, 2018, pp. 1961–1985.10.1093/gji/ggy229 Search in Google Scholar

59. Källén H, Heyden A & Lindh P: “Estimation of grain size in asphalt samples using digital image analysis”. In: Proceedings of SPIE – The International Society for Optical Engineering, 2014.10.1117/12.2061730 Search in Google Scholar

60. Källén H, Heyden A, Åström K & Lindh P: Measuring and evaluating bitumen coverage of stones using two different digital image analysis methods. Measurement, Vol. 84, 2016, pp. 56–67.10.1016/j.measurement.2016.02.007 Search in Google Scholar

61. Lemenkov V & Lemenkova P: “Using TeX Markup Language for 3D and 2D Geological Plotting”. Foundations of Computing and Decision Sciences, Vol. 46, 2021, pp. 43–69.10.2478/fcds-2021-0004 Search in Google Scholar

62. Lemenkov V, Lemenkova P: “Measuring Equivalent Cohesion Ceq of the Frozen Soils by Compression Strength Using Kriolab Equipment”. Civil and Environmental Engineering Reports, Vol. 31, No. 2, 2021, pp. 63–84.10.2478/ceer-2021-0020 Search in Google Scholar

63. Xuequan W, Sheng Y, Xiaodong S, Mingshu T & Liji Y: “Alkali-activated slag cement based radioactive waste forms”. Cement and Concrete Research, Vol. 21, No. 1, 1991, pp. 16-20.10.1016/0008-8846(91)90026-E Search in Google Scholar

64. Zhu D, Mobasher B & Rajan S D: “Non-contacting strain measurement for cement-based composites in dynamic tensile testing”. Cement and Concrete Composites, Vol. 34, No. 2, 2012, pp. 147-155.10.1016/j.cemconcomp.2011.09.011 Search in Google Scholar

65. Oucif C & Mauludin L M: “Numerical modeling of high velocity impact applied to reinforced concrete panel”. Underground Space, Vol. 4, No. 1, 2019, pp. 1-9.10.1016/j.undsp.2018.04.007 Search in Google Scholar

66. Uppalapati S, Vandewalle L & Cizer Ö: “Monitoring the setting process of alkali-activated slag-fly ash cements with ultrasonic P-wave velocity”. Construction and Building Materials, Vol. 271, 2021.10.1016/j.conbuildmat.2020.121592 Search in Google Scholar

67. Meng T, Hong Y, Ying K & Wang Z: “Comparison of technical properties of cement pastes with different activated recycled powder from construction and demolition waste”. Cement and Concrete Composites, Vol. 120, 2021.10.1016/j.cemconcomp.2021.104065 Search in Google Scholar

68. Lahdensivu J, Kekäläinen P & Lahdensivu A: “Alkali-silica Reaction in Finnish Concrete Structures”. Nordic Concrete Research, No. 59(1), 2018, pp. 31–44.10.2478/ncr-2018-0013 Search in Google Scholar

69. Ogata T & Osada K: “Seismic retrofitting of expressway bridges in Japan”. Cement and Concrete Composites, 22(1), 2000, pp. 17–27.10.1016/S0958-9465(99)00045-1 Search in Google Scholar

70. Matsumoto N, Kitago Y & Sato T: “Restoration, seismic strengthening and seismic design for railway viaducts after Hyogoken-Nanbu Earthquake”. Cement and Concrete Composites, Vol. 22, No. 1, 2000, pp. 47–57.10.1016/S0958-9465(99)00048-7 Search in Google Scholar

71. Fabozzi S, Licata V, Autuori S, Bilotta E, Russo G & Silvestri F: “Prediction of the seismic behavior of an underground railway station and a tunnel in Napoli (Italy)”. Underground Space, Vol. 2, No. 2, 2017, pp. 88–105.10.1016/j.undsp.2017.03.005 Search in Google Scholar

72. Arora K, Gutierrez M, Hedayat A & Xia C: “Tunnels in squeezing clay-rich rocks”. Underground Space, 2020.10.1016/j.undsp.2020.07.001 Search in Google Scholar

73. Lindh P: “Optimizing binder blends for shallow stabilisation of fine-grained soils”. Ground Improvement, Vol. 5, 2001, pp. 23–34.10.1680/grim.2001.5.1.23 Search in Google Scholar

74. Singh J, Cilli P A, Hosa, A & Main I G: “Digital rock physics in four dimensions: simulating cementation and its effect on seismic velocity”. Geophysical Journal International, Vol. 222, No. 3, 2020, pp. 1606–1619.10.1093/gji/ggaa271 Search in Google Scholar

75. Revert A B, De Weerdt K, Jakobsen U H & Geiker M R: “Impact of Accelerated Carbonation on Microstructure and Phase Assemblage”. Nordic Concrete Research, No. 59(1), 2018, pp. 111–126.10.2478/ncr-2018-0018 Search in Google Scholar

76. Li G & Zhao X: “Properties of concrete incorporating fly ash and ground granulated blast-furnace slag”. Cement and Concrete Composites, Vol. 25, No. 3, 2003, pp. 293–299.10.1016/S0958-9465(02)00058-6 Search in Google Scholar

77. Badrawi E F & El-kady M S: “Stabilizing soft clay using geo-foam beads and cement bypass dust”. Underground Space, Vol. 5, No. 4, 2020, pp. 292-297.10.1016/j.undsp.2019.05.003 Search in Google Scholar

78. Mavko G, Mukerju T & Dvorkin J: “The Rock Physics Handbook”. Cambridge, UK: Cambridge University Press, 1998. Search in Google Scholar

79. Khan Z, Majid A, Cascante G, Hutchinson D J & Pezeshkpour P: “Characterisation of a cemented sand with the pulse-velocity method”. Canadian Geotechnical Journal, Vol. 43, 2006, pp. 294–309.10.1139/t06-008 Search in Google Scholar

80. Eisner L, Fischer T & Rutledge J T: “Determination of S-wave slowness from a linear array of borehole receivers”. Geophysical Journal International, Vol. 176, No. 1, 2009, pp. 31–39.10.1111/j.1365-246X.2008.03939.x Search in Google Scholar

81. Xu N, Song Z, Guo M Z, Jiang L, Chu H, Pei C, Yu P, Liu Q & Li Z: “Employing ultrasonic wave as a novel trigger of microcapsule self-healing cementitious materials”. Cement and Concrete Composites, Vol. 118, 2021.10.1016/j.cemconcomp.2021.103951 Search in Google Scholar

82. SIS: “Standard Test Methods for Downhole Seismic Testing”. ASTM standard. ASTM D7400/D7400M-19. Swedish Institute for Standards, 2021. Search in Google Scholar

83. SIS: “Standard Guide for Using the Seismic Refraction Method for Subsurface Investigation”. ASTM standard. ASTM D5777-18. Swedish Institute for Standards, 2021. Search in Google Scholar

84. Lillie R J: “Whole Earth Geophysics. An Introductory Textbook for Geologists and Geophysicists”. Oregon State University. U.S.A: Prentice Hall, 1999. Search in Google Scholar

85. Sheriff R E, Geldart L P: “Exploration Seismology”. (2nd ed.). Cambridge, UK: Cambridge University Press, 1995.10.1017/CBO9781139168359 Search in Google Scholar

86. Schlumberger Oilfield Glossary: “P-wave”, 2021. Search in Google Scholar

87. Schlumberger Oilfield Glossary: “S-wave”, 2021. Search in Google Scholar

88. SIS: “Geotechnical investigation and testing – Laboratory testing of soil – Part 7: Unconfined compression test (ISO 17892-7:2017)”. Swedish Institute for Standards, 2021. Search in Google Scholar

89. Myers R H, Montgomery D C & Anderson-Cook C M: “Response Surface Methodology: Process and Product Optimization Using Designed Experiments”. 4th Ed. New York, U.S.A: John Wiley & Sons, 2016. Search in Google Scholar

90. Jersak J, Göransson G, Ohlsson Y, Larsson L, Flyhammar P & Lindh P: “In-situ övertäckning av förorenade sediment. Metodöversikt”. SGI Publikation 30-1, Statens geotekniska institut, Linköping, 2016. Search in Google Scholar

91. Smith W F: “Experimental design for formulation”. ASA-SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia, ASA, Alexandria, VA, 2005. Search in Google Scholar

92. Montgomery D C: Design and Analysis of Experiment. New York: John Wiley & Sons, 1996. Search in Google Scholar

93. Lemenkova P: “Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language”. Geodesy and Cartography, Vol. 45, No. 2, 2019, pp. 57–84.10.3846/gac.2019.3785 Search in Google Scholar

94. SIS: “Earthworks – Part 4: Soil treatment with lime and/or hydraulic binders”. 2018-12-12, 2018. Search in Google Scholar

95. Aki K & Richards P G: “Quantitative Seismology, Vol. 1: Theory and Methods”. W H Freeman & Co, 1980. Search in Google Scholar

96. Bullen K E & Bolt B A: “An Introduction to the Theory of Seismology”. 4th ed. Cambridge: Cambridge University Press, 1985. Search in Google Scholar

97. Dahlen F A & Tromp J: “Theoretical Global Seismology”. New Jersey: Princeton University Press, 1999.10.1515/9780691216157 Search in Google Scholar

98. Newman W I: “Mathematical Methods for Geophysics and Space Physics Mathematical Methods for Geophysics and Space Physics”. New Jersey: Princeton University Press, 2016.10.1515/9781400882823 Search in Google Scholar

99. Wang Y, Yuan Q, Deng D & Liu Z: “Modeling compressive strength of cement asphalt composite based on pore size distribution”. Construction and Building Materials, Vol. 150, 2017, pp. 714–722.10.1016/j.conbuildmat.2017.06.049 Search in Google Scholar

100. Su J, Wang J, Li Z, Liang X: “Effect of reinforcement grade and concrete strength on seismic performance of reinforced concrete bridge piers”. Engineering Structures, Vol. 198, 2019.10.1016/j.engstruct.2019.109512 Search in Google Scholar

101. Zhang X, Yang Z, Chen X, Guan J, Pei W & Luo T: “Experimental study of frozen soil effect on seismic behavior of bridge pile foundations in cold regions”. Structures, Vol. 32, 2021, pp. 1752–1762.10.1016/j.istruc.2021.03.119 Search in Google Scholar

eISSN:
2545-2819
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Materials Sciences, Materials Processing