Acceso abierto

Hybrid Regression Models for Predicting Hydration: A Case Study in Pediatric Hemodialysis

, , ,  y   
10 sept 2025

Cite
Descargar portada

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2 (4), 230–243. https://doi.org/10.1136/svn-2017-000101 JiangF. JiangY. ZhiH. DongY. LiH. MaS. WangY. DongQ. ShenH. WangY. 2017 Artificial intelligence in healthcare: Past, present and future Stroke and Vascular Neurology 2 4 230 243 https://doi.org/10.1136/svn-2017-000101 Search in Google Scholar

Chai, Y., Li, J., Sun, X., Lei, Z., Zhang, Z., Hou, G. (2020). The performance of a body composition–based equation in estimating overhydration of hemodialysis patients. SN Comprehensive Clinical Medicine, 2 (7), 909–913. https://doi.org/10.1007/s42399-020-00338-5 ChaiY. LiJ. SunX. LeiZ. ZhangZ. HouG. 2020 The performance of a body composition–based equation in estimating overhydration of hemodialysis patients SN Comprehensive Clinical Medicine 2 7 909 913 https://doi.org/10.1007/s42399-020-00338-5 Search in Google Scholar

Pérez-Morales, R., Donate-Correa, J., Martín-Núñez, E., Pérez-Delgado, N., Ferri, C., López-Montes, A., Jiménez-Sosa, A., Navarro-González, J. F. (2021). Extracellular water/total body water ratio as predictor of mortality in hemodialysis patients. Renal Failure, 43 (1), 821–829. https://doi.org/10.1080/0886022x.2021.1922442 Pérez-MoralesR. Donate-CorreaJ. Martín-NúñezE. Pérez-DelgadoN. FerriC. López-MontesA. Jiménez-SosaA. Navarro-GonzálezJ. F. 2021 Extracellular water/total body water ratio as predictor of mortality in hemodialysis patients Renal Failure 43 1 821 829 https://doi.org/10.1080/0886022x.2021.1922442 Search in Google Scholar

Nakagawa, H., Sato, Y., Toshimori, H., Fujimoto, S. (2015). Evaluation of a new bio-impedance spectroscopy device in healthy Japanese. Bio-Medical Materials and Engineering, 26 (3-4), 97–102. https://doi.org/10.3233/bme-151553 NakagawaH. SatoY. ToshimoriH. FujimotoS. 2015 Evaluation of a new bio-impedance spectroscopy device in healthy Japanese Bio-Medical Materials and Engineering 26 3-4 97 102 https://doi.org/10.3233/bme-151553 Search in Google Scholar

Loutradis, C., Sarafidis, P. A., Ekart, R., Papadopoulos, C., Sachpekidis, V., Alexandrou, M. E., Papadopoulou, D., Efstratiadis, G., Papagianni, A., London, G., Zoccali, C. (2019). The effect of dry-weight reduction guided by lung ultrasound on ambulatory blood pressure in hemodialysis patients: A randomized controlled trial. Kidney International, 95 (6), 1505–1513. https://doi.org/10.1016/j.kint.2019.02.018 LoutradisC. SarafidisP. A. EkartR. PapadopoulosC. SachpekidisV. AlexandrouM. E. PapadopoulouD. EfstratiadisG. PapagianniA. LondonG. ZoccaliC. 2019 The effect of dry-weight reduction guided by lung ultrasound on ambulatory blood pressure in hemodialysis patients: A randomized controlled trial Kidney International 95 6 1505 1513 https://doi.org/10.1016/j.kint.2019.02.018 Search in Google Scholar

Yajima, T., Arao, M., Yajima, K., Takahashi, H., Yasuda, K. (2019). The associations of fat tissue and muscle mass indices with all-cause mortality in patients undergoing hemodialysis. PloS One, 14 (2), e0211988. https://doi.org/10.1371/journal.pone.0211988 YajimaT. AraoM. YajimaK. TakahashiH. YasudaK. 2019 The associations of fat tissue and muscle mass indices with all-cause mortality in patients undergoing hemodialysis PloS One 14 2 e0211988 https://doi.org/10.1371/journal.pone.0211988 Search in Google Scholar

Zaloszyc, A., Schaefer, B., Schaefer, F., Krid, S., Salomon, R., Niaudet, P., Schmitt, C. P., Fischbach, M. (2013). Hydration measurement by bioimpedance spectroscopy and blood pressure management in children on hemodialysis. Pediatric Nephrology, 28 (11), 2169–2177. https://doi.org/10.1007/s00467-013-2540-6 ZaloszycA. SchaeferB. SchaeferF. KridS. SalomonR. NiaudetP. SchmittC. P. FischbachM. 2013 Hydration measurement by bioimpedance spectroscopy and blood pressure management in children on hemodialysis Pediatric Nephrology 28 11 2169 2177 https://doi.org/10.1007/s00467-013-2540-6 Search in Google Scholar

Rymarz, A., Gibińska, J., Zajbt, M., Piechota, W., Niemczyk, S. (2018). Low lean tissue mass can be a predictor of one-year survival in hemodialysis patients. Renal Failure, 40 (1), 231–237. https://doi.org/10.1080/0886022x.2018.1456451 RymarzA. GibińskaJ. ZajbtM. PiechotaW. NiemczykS. 2018 Low lean tissue mass can be a predictor of one-year survival in hemodialysis patients Renal Failure 40 1 231 237 https://doi.org/10.1080/0886022x.2018.1456451 Search in Google Scholar

Marcelli, D., Usvyat, L. A., Kotanko, P., Bayh, I., Canaud, B., Etter, M., Gatti, E., Grassmann, A., Wang, Y., Marelli, C., Scatizzi, L., Stopper, A., van der Sande, F. M., Kooman, J. (2015). Body composition and survival in dialysis patients: Results from an international cohort study. Clinical Journal of the American Society of Nephrology, 10 (7), 1192–1200. https://doi.org/10.2215/cjn.08550814 MarcelliD. UsvyatL. A. KotankoP. BayhI. CanaudB. EtterM. GattiE. GrassmannA. WangY. MarelliC. ScatizziL. StopperA. van der SandeF. M. KoomanJ. 2015 Body composition and survival in dialysis patients: Results from an international cohort study Clinical Journal of the American Society of Nephrology 10 7 1192 1200 https://doi.org/10.2215/cjn.08550814 Search in Google Scholar

Khalil, S. F., Mohktar, M. S., Ibrahim, F. (2014). The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors, 14 (6), 10895–10928. https://doi.org/10.3390/s140610895 KhalilS. F. MohktarM. S. IbrahimF. 2014 The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases Sensors 14 6 10895 10928 https://doi.org/10.3390/s140610895 Search in Google Scholar

Jaffrin, M. Y., Morel, H. (2008). Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Medical Engineering & Physics, 30 (10), 1257–1269. https://doi.org/10.1016/j.medengphy.2008.06.009 JaffrinM. Y. MorelH. 2008 Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods Medical Engineering & Physics 30 10 1257 1269 https://doi.org/10.1016/j.medengphy.2008.06.009 Search in Google Scholar

Cole, K. S. (1940). Permeability and impermeability of cell membranes for ions. Cold Spring Harbor Symposia on Quantitative Biology, 8, 110–122. https://doi.org/10.1101/SQB.1940.008.01.013 ColeK. S. 1940 Permeability and impermeability of cell membranes for ions Cold Spring Harbor Symposia on Quantitative Biology 8 110 122 https://doi.org/10.1101/SQB.1940.008.01.013 Search in Google Scholar

Chamney, P. W., Wabel, P., Moissl, U. M., Müller, M. J., Bosy-Westphal, A., Korth, O., Fuller, N. J. (2007). A whole-body model to distinguish excess fluid from the hydration of major body tissues. The American Journal of Clinical Nutrition, 85 (1), 80–89. https://doi.org/10.1093/ajcn/85.1.80 ChamneyP. W. WabelP. MoisslU. M. MüllerM. J. Bosy-WestphalA. KorthO. FullerN. J. 2007 A whole-body model to distinguish excess fluid from the hydration of major body tissues The American Journal of Clinical Nutrition 85 1 80 89 https://doi.org/10.1093/ajcn/85.1.80 Search in Google Scholar

Chamney, P. W., Krämer, M., Rode, C., Kleinekofort, W., Wizemann, V. (2002). A new technique for establishing dry weight in hemodialysis patients via whole body bioimpedance. Kidney International, 61 (6), 2250–2258. https://doi.org/10.1046/j.1523-1755.2002.00377.x ChamneyP. W. KrämerM. RodeC. KleinekofortW. WizemannV. 2002 A new technique for establishing dry weight in hemodialysis patients via whole body bioimpedance Kidney International 61 6 2250 2258 https://doi.org/10.1046/j.1523-1755.2002.00377.x Search in Google Scholar

Zoccali, C., Tripepi, R., Torino, C., Bellantoni, M., Tripepi, G., Mallamaci, F. (2014). Lung congestion as a risk factor in end-stage renal disease. Blood Purification, 36 (3-4), 184–191. https://doi.org/10.1159/000356085 ZoccaliC. TripepiR. TorinoC. BellantoniM. TripepiG. MallamaciF. 2014 Lung congestion as a risk factor in end-stage renal disease Blood Purification 36 3-4 184 191 https://doi.org/10.1159/000356085 Search in Google Scholar

Agarwal, R., Weir, M. R. (2010). Dry-weight: A concept revisited in an effort to avoid medication-directed approaches for blood pressure control in hemodialysis patients. Clinical Journal of the American Society of Nephrology, 5 (7), 1255–1260. https://doi.org/10.2215/cjn.01760210 AgarwalR. WeirM. R. 2010 Dry-weight: A concept revisited in an effort to avoid medication-directed approaches for blood pressure control in hemodialysis patients Clinical Journal of the American Society of Nephrology 5 7 1255 1260 https://doi.org/10.2215/cjn.01760210 Search in Google Scholar

Agarwal, R., Kelley, K., Light, R. P. (2008). Diagnostic utility of blood volume monitoring in hemodialysis patients. American Journal of Kidney Diseases, 51 (2), 242–254. https://doi.org/10.1053/j.ajkd.2007.10.036 AgarwalR. KelleyK. LightR. P. 2008 Diagnostic utility of blood volume monitoring in hemodialysis patients American Journal of Kidney Diseases 51 2 242 254 https://doi.org/10.1053/j.ajkd.2007.10.036 Search in Google Scholar

Wizemann, V., Schilling, M. (1995). Dilemma of assessing volume state—the use and the limitations of a clinical score. Nephrology Dialysis Transplantation, 10 (11), 2114–2117. https://doi.org/10.1093/ndt/10.11.2114 WizemannV. SchillingM. 1995 Dilemma of assessing volume state—the use and the limitations of a clinical score Nephrology Dialysis Transplantation 10 11 2114 2117 https://doi.org/10.1093/ndt/10.11.2114 Search in Google Scholar

Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., Biancone, P. (2021). The role of artificial intelligence in healthcare: A structured literature review. BMC Medical Informatics and Decision Making, 21 (1), 125. https://doi.org/10.1186/s12911-021-01488-9 SecinaroS. CalandraD. SecinaroA. MuthuranguV. BianconeP. 2021 The role of artificial intelligence in healthcare: A structured literature review BMC Medical Informatics and Decision Making 21 1 125 https://doi.org/10.1186/s12911-021-01488-9 Search in Google Scholar

Kanda, E., Epureanu, B. I., Adachi, T., Tsuruta, Y., Kikuchi, K., Kashihara, N., Abe, M., Masakane, I., Nitta, K. (2020). Application of explainable ensemble artificial intelligence model to categorization of hemodialysis-patient and treatment using nationwide-real-world data in Japan. PloS One, 15 (5), e0233491. https://doi.org/10.1371/journal.pone.0233491 KandaE. EpureanuB. I. AdachiT. TsurutaY. KikuchiK. KashiharaN. AbeM. MasakaneI. NittaK. 2020 Application of explainable ensemble artificial intelligence model to categorization of hemodialysis-patient and treatment using nationwide-real-world data in Japan PloS One 15 5 e0233491 https://doi.org/10.1371/journal.pone.0233491 Search in Google Scholar

Guo, X., Zhou, W., Lu, Q., Du, A., Cai, Y., Ding, Y. (2021). Assessing dry weight of hemodialysis patients via Sparse Laplacian regularized RVFL neural network with L2,1-norm. BioMed Research International, 2021, 627650. https://doi.org/10.1155/2021/6627650 GuoX. ZhouW. LuQ. DuA. CaiY. DingY. 2021 Assessing dry weight of hemodialysis patients via Sparse Laplacian regularized RVFL neural network with L2,1-norm BioMed Research International 2021 627650 https://doi.org/10.1155/2021/6627650 Search in Google Scholar

Djordjevic, S., Kostic, M., Milosevic, D., Cvetkovic, M., Mitrovic, K., Mladenovic, V. (2023). Prediction of overhydration in the process of pediatric hemodialysis using artificial neural network. In 2023 12th Mediterranean Conference on Embedded Computing (MECO). IEEE. https://doi.org/10.1109/MECO58584.2023.10154915 DjordjevicS. KosticM. MilosevicD. CvetkovicM. MitrovicK. MladenovicV. 2023 Prediction of overhydration in the process of pediatric hemodialysis using artificial neural network In 2023 12th Mediterranean Conference on Embedded Computing (MECO) IEEE https://doi.org/10.1109/MECO58584.2023.10154915 Search in Google Scholar

Muntasir Nishat, M., Faisal, F., Rahman Dip, R., Nasrullah, S. M., Ahsan, R., Shikder, F., Ar-Raihan Asif, M. A., Hoque, M. A. (2021). A comprehensive analysis on detecting chronic kidney disease by employing machine learning algorithms. EAI Endorsed Transactions on Pervasive Health and Technology, 7 (29), 170671. https://doi.org/10.4108/eai.13-8-2021.170671 Muntasir NishatM. FaisalF. Rahman DipR. NasrullahS. M. AhsanR. ShikderF. Ar-Raihan AsifM. A. HoqueM. A. 2021 A comprehensive analysis on detecting chronic kidney disease by employing machine learning algorithms EAI Endorsed Transactions on Pervasive Health and Technology 7 29 170671 https://doi.org/10.4108/eai.13-8-2021.170671 Search in Google Scholar

Belur Nagaraj, S., Pena, M. J., Ju, W., Heerspink, H. L., The BEAt-DKD Consortium. (2020). Machine-learning–based early prediction of end-stage renal disease in patients with diabetic kidney disease using clinical trials data. Diabetes, Obesity & Metabolism, 22 (12), 2479–2486. https://doi.org/10.1111/dom.14178 Belur NagarajS. PenaM. J. JuW. HeerspinkH. L. The BEAt-DKD Consortium 2020 Machine-learning–based early prediction of end-stage renal disease in patients with diabetic kidney disease using clinical trials data Diabetes, Obesity & Metabolism 22 12 2479 2486 https://doi.org/10.1111/dom.14178 Search in Google Scholar

Arif, M. S., Mukheimer, A., Asif, D. (2023). Enhancing the early detection of chronic kidney disease: A robust machine learning model. Big Data and Cognitive Computing, 7 (3), 144. https://doi.org/10.3390/bdcc7030144 ArifM. S. MukheimerA. AsifD. 2023 Enhancing the early detection of chronic kidney disease: A robust machine learning model Big Data and Cognitive Computing 7 3 144 https://doi.org/10.3390/bdcc7030144 Search in Google Scholar

Swain, D., Mehta, U., Bhatt, A., Patel, H., Patel, K., Mehta, D., Acharya, B., Gerogiannis, V. C., Kanavos, A., Manika, S. (2023). A robust chronic kidney disease classifier using machine learning. Electronics, 12 (1), 212. https://doi.org/10.3390/electronics12010212 SwainD. MehtaU. BhattA. PatelH. PatelK. MehtaD. AcharyaB. GerogiannisV. C. KanavosA. ManikaS. 2023 A robust chronic kidney disease classifier using machine learning Electronics 12 1 212 https://doi.org/10.3390/electronics12010212 Search in Google Scholar

Shih, C.-C., Chen, S.-H., Chen, G.-D., Chang, C.-C., Shih, Y.-L. (2021). Development of a longitudinal diagnosis and prognosis in patients with chronic kidney disease: Intelligent clinical decision-making scheme. International Journal of Environmental Research and Public Health, 18 (23), 12807. https://doi.org/10.3390/ijerph182312807 ShihC.-C. ChenS.-H. ChenG.-D. ChangC.-C. ShihY.-L. 2021 Development of a longitudinal diagnosis and prognosis in patients with chronic kidney disease: Intelligent clinical decision-making scheme International Journal of Environmental Research and Public Health 18 23 12807 https://doi.org/10.3390/ijerph182312807 Search in Google Scholar

Swain, D., Patel, H., Patel, K., Sakariya, V., Chaudhari, N. (2022). An intelligent clinical support system for the early diagnosis of the chronic kidney disease. In 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC). IEEE. https://doi.org/10.1109/iSSSC56467.2022.10051517 SwainD. PatelH. PatelK. SakariyaV. ChaudhariN. 2022 An intelligent clinical support system for the early diagnosis of the chronic kidney disease In 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC) IEEE https://doi.org/10.1109/iSSSC56467.2022.10051517 Search in Google Scholar

Mladenović, V., Kostić, M., Milošević, D., Zanaj, E., Đorđević, S. (2024). System for prediction and balancing excess fluid in the body during hemodialysis based on artificial intelligence. Patent RS20240030A2. MladenovićV. KostićM. MiloševićD. ZanajE. ĐorđevićS. 2024 System for prediction and balancing excess fluid in the body during hemodialysis based on artificial intelligence Patent RS20240030A2. Search in Google Scholar

Ren, Y., Fei, H., Liang, X., Ji, D., Cheng, M. (2019). A hybrid neural network model for predicting kidney disease in hypertension patients based on electronic health records. BMC Medical Informatics and Decision Making, 19 (S2), 51. https://doi.org/10.1186/s12911-019-0765-4 RenY. FeiH. LiangX. JiD. ChengM. 2019 A hybrid neural network model for predicting kidney disease in hypertension patients based on electronic health records BMC Medical Informatics and Decision Making 19 S2 51 https://doi.org/10.1186/s12911-019-0765-4 Search in Google Scholar

Singh, V., Jain, D. (2021). A hybrid parallel classification model for the diagnosis of chronic kidney disease. International Journal of Interactive Multimedia and Artificial Intelligence, 8 (2). https://doi.org/10.9781/ijimai.2021.10.008 SinghV. JainD. 2021 A hybrid parallel classification model for the diagnosis of chronic kidney disease International Journal of Interactive Multimedia and Artificial Intelligence 8 2 https://doi.org/10.9781/ijimai.2021.10.008 Search in Google Scholar

Dey, S. K., Uddin, K. M. M., Babu, H. M. H., Rahman, M. M., Howlader, A., Uddin, K. M. A. (2022). Chi2-MI: A hybrid feature selection based machine learning approach in diagnosis of chronic kidney disease. Intelligent Systems with Applications, 16, 200144. https://doi.org/10.1016/j.iswa.2022.200144 DeyS. K. UddinK. M. M. BabuH. M. H. RahmanM. M. HowladerA. UddinK. M. A. 2022 Chi2-MI: A hybrid feature selection based machine learning approach in diagnosis of chronic kidney disease Intelligent Systems with Applications 16 200144 https://doi.org/10.1016/j.iswa.2022.200144 Search in Google Scholar

Khalid, H., Khan, A., Khan, M. Z., Mehmood, G., Qureshi, M. S. (2023). Machine learning hybrid model for the prediction of chronic kidney disease. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2023/9266889 KhalidH. KhanA. KhanM. Z. MehmoodG. QureshiM. S. 2023 Machine learning hybrid model for the prediction of chronic kidney disease Computational Intelligence and Neuroscience https://doi.org/10.1155/2023/9266889 Search in Google Scholar

Yadav, D. C., Pal, S. (2021). Performance based evaluation ofAlgorithmson Chronic Kidney Disease using hybrid ensemble model in machine learning. Biomedical & Pharmacology Journal, 14 (3), 1633–1645. https://dx.doi.org/10.13005/bpj/2264 YadavD. C. PalS. 2021 Performance based evaluation ofAlgorithmson Chronic Kidney Disease using hybrid ensemble model in machine learning Biomedical & Pharmacology Journal 14 3 1633 1645 https://dx.doi.org/10.13005/bpj/2264 Search in Google Scholar

Ratnababu, M., Naidu, M. R. (2019). A hybrid method for detection of kidney disease using Machine Learning. Turkish Journal of Computer and Mathematics Education, 11 (2), 654–669. RatnababuM. NaiduM. R. 2019 A hybrid method for detection of kidney disease using Machine Learning Turkish Journal of Computer and Mathematics Education 11 2 654 669 Search in Google Scholar

Jhou, M.-J., Chen, M.-S., Lee, T.-S., Yang, C.-T., Chiu, Y.-L., Lu, C.-J. (2022). A hybrid risk factor evaluation scheme for metabolic syndrome and stage 3 chronic kidney disease based on multiple machine learning techniques. Healthcare, 10 (12), 2496. https://doi.org/10.3390/healthcare10122496 JhouM.-J. ChenM.-S. LeeT.-S. YangC.-T. ChiuY.-L. LuC.-J. 2022 A hybrid risk factor evaluation scheme for metabolic syndrome and stage 3 chronic kidney disease based on multiple machine learning techniques Healthcare 10 12 2496 https://doi.org/10.3390/healthcare10122496 Search in Google Scholar

Guli, U. J., Malgwi, Y. M., Adamu, I., Ezekiel, P. (2023). Hybrid diagnostic model for kidney disease prediction using data mining techniques. African Journal of Advances in Science and Technology Research, 11 (1), 75–89. GuliU. J. MalgwiY. M. AdamuI. EzekielP. 2023 Hybrid diagnostic model for kidney disease prediction using data mining techniques African Journal of Advances in Science and Technology Research 11 1 75 89 Search in Google Scholar

Zhao, Y., Ogden, R. T., Reiss, P. T. (2012). Wavelet-based LASSO in functional linear regression. Journal of Computational and Graphical Statistics, 21 (3), 600–617. https://doi.org/10.1080/10618600.2012.679241 ZhaoY. OgdenR. T. ReissP. T. 2012 Wavelet-based LASSO in functional linear regression Journal of Computational and Graphical Statistics 21 3 600 617 https://doi.org/10.1080/10618600.2012.679241 Search in Google Scholar

Rao, H., Shi, X., Rodrigue, A. K., Feng, J., Xia, Y., Elhoseny, M., Yuan, X., Gu, L. (2019). Feature selection based on artificial bee colony and gradient boosting decision tree. Applied Soft Computing, 74, 634–642. https://doi.org/10.1016/j.asoc.2018.10.036 RaoH. ShiX. RodrigueA. K. FengJ. XiaY. ElhosenyM. YuanX. GuL. 2019 Feature selection based on artificial bee colony and gradient boosting decision tree Applied Soft Computing 74 634 642 https://doi.org/10.1016/j.asoc.2018.10.036 Search in Google Scholar

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29 (5), 1189–1232. https://doi.org/10.1214/aos/1013203451 FriedmanJ. H. 2001 Greedy function approximation: A gradient boosting machine The Annals of Statistics 29 5 1189 1232 https://doi.org/10.1214/aos/1013203451 Search in Google Scholar

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research, 12 (85), 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html PedregosaF. VaroquauxG. GramfortA. MichelV. ThirionB. GriselO. BlondelM. MüllerA. NothmanJ. LouppeG. PrettenhoferP. WeissR. DubourgV. VanderplasJ. PassosA. CournapeauD. BrucherM. PerrotM. DuchesnayÉ. 2011 Scikit-learn: Machine Learning in Python In Journal of Machine Learning Research 12 85 2825 2830 http://jmlr.org/papers/v12/pedregosa11a.html Search in Google Scholar

Brentan, B. M., Luvizotto Jr., E., Herrera, M., Izquierdo, J., Pérez-García, R. (2017). Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 309, 532–541. https://doi.org/10.1016/j.cam.2016.02.009 BrentanB. M. LuvizottoE.Jr. HerreraM. IzquierdoJ. Pérez-GarcíaR. 2017 Hybrid regression model for near real-time urban water demand forecasting Journal of Computational and Applied Mathematics 309 532 541 https://doi.org/10.1016/j.cam.2016.02.009 Search in Google Scholar

Anaconda Inc. (2024). Unleash AI innovation and value. https://www.anaconda.com/ Anaconda Inc. 2024 Unleash AI innovation and value https://www.anaconda.com/ Search in Google Scholar

James, G., Witten, D., Hastie, T., Tibshirani, R. (2021). An Introduction to Statistical Learning: With Applications in R. Second Edition. Springer, ISBN 978-1071614174. JamesG. WittenD. HastieT. TibshiraniR. 2021 An Introduction to Statistical Learning: With Applications in R Second Edition Springer ISBN 978-1071614174. Search in Google Scholar

Algamal, Z. Y., Lee, M. H. (2015). Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification. Expert Systems with Applications, 42 (23), 9326–9332. https://doi.org/10.1016/j.eswa.2015.08.016 AlgamalZ. Y. LeeM. H. 2015 Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification Expert Systems with Applications 42 23 9326 9332 https://doi.org/10.1016/j.eswa.2015.08.016 Search in Google Scholar

Brentan, B. M., Luvizotto Jr., E., Herrera, M., Izquierdo, J., Pérez-García, R. (2017). Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 309, 532–541. https://doi.org/10.1016/j.cam.2016.02.009 BrentanB. M. LuvizottoE.Jr. HerreraM. IzquierdoJ. Pérez-GarcíaR. 2017 Hybrid regression model for near real-time urban water demand forecasting Journal of Computational and Applied Mathematics 309 532 541 https://doi.org/10.1016/j.cam.2016.02.009 Search in Google Scholar

Chicco, D., Warrens, M. J., Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ: Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623 ChiccoD. WarrensM. J. JurmanG. 2021 The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation PeerJ: Computer Science 7 e623 https://doi.org/10.7717/peerj-cs.623 Search in Google Scholar

Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second Edition. Springer. https://doi.org/10.1007/978-0-387-84858-7 HastieT. TibshiraniR. FriedmanJ. 2009 The Elements of Statistical Learning: Data Mining, Inference, and Prediction Second Edition Springer https://doi.org/10.1007/978-0-387-84858-7 Search in Google Scholar

Lin, H. T., Lin, C. J. (2003). A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Technical Report, Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei City, Taiwan. LinH. T. LinC. J. 2003 A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods Technical Report, Department of Computer Science and Information Engineering, National Taiwan Normal University Taipei City, Taiwan Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Ingeniería, Ingeniería eléctrica, Ingeniería de Control, metrología y ensayos