This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Lupat, R., Perera, R., Loi, S., Li, J. (2023). Moanna: Multi-omics autoencoder-based neural network algorithm for predicting breast cancer subtypes. IEEE Access, 11, 10912–10924. https://doi.org/10.1109/ACCESS.2023.3240515LupatR.PereraR.LoiS.LiJ.2023Moanna: Multi-omics autoencoder-based neural network algorithm for predicting breast cancer subtypesIEEE Access111091210924https://doi.org/10.1109/ACCESS.2023.3240515Search in Google Scholar
Megha, R., Geethapriya, Radhakrishna, S., Eranki, A. (2024). Breast tumor heterogeneity quantification using 3D ultrasound texture. In 2024 IEEE South Asian Ultrasonics Symposium (SAUS). IEEE. https://doi.org/10.1109/SAUS61785.2024.10563639MeghaR.GeethapriyaRadhakrishnaS.ErankiA.2024Breast tumor heterogeneity quantification using 3D ultrasound textureIn2024 IEEE South Asian Ultrasonics Symposium (SAUS)IEEEhttps://doi.org/10.1109/SAUS61785.2024.10563639Search in Google Scholar
Mo, Y., Han, C., Liu, Y., Liu, M., Shi, Z., Lin, J. (2023). HoVer-Trans: Anatomy-aware HoVer-Transformer for ROI-free breast cancer diagnosis in ultrasound images. IEEE Transactions on Medical Imaging, 42 (6), 1696–1706. https://doi.org/10.1109/TMI.2023.3236011MoY.HanC.LiuY.LiuM.ShiZ.LinJ.2023HoVer-Trans: Anatomy-aware HoVer-Transformer for ROI-free breast cancer diagnosis in ultrasound imagesIEEE Transactions on Medical Imaging42616961706https://doi.org/10.1109/TMI.2023.3236011Search in Google Scholar
Lamprou, C., Katsikari, K., Rahmani, N., Hadjileontiadis, L. J., Seghier, M., Alshehhi, A. (2024). StethoNet: Robust breast cancer mammography classification framework. IEEE Access, 12, 144890–144904. https://doi.org/10.1109/ACCESS.2024.3473010LamprouC.KatsikariK.RahmaniN.HadjileontiadisL. J.SeghierM.AlshehhiA.2024StethoNet: Robust breast cancer mammography classification frameworkIEEE Access12144890144904https://doi.org/10.1109/ACCESS.2024.3473010Search in Google Scholar
Felício, J. M., Martins, R. A., Costa, J. R., Fernandes, C. A. (2024). Microwave breast imaging for cancer diagnosis: An overview [Bioelectromagnetics]. IEEE Antennas and Propagation Magazine, 66 (4), 85–97. https://doi.org/10.1109/MAP.2024.3411480FelícioJ. M.MartinsR. A.CostaJ. R.FernandesC. A.2024Microwave breast imaging for cancer diagnosis: An overview [Bioelectromagnetics]IEEE Antennas and Propagation Magazine6648597https://doi.org/10.1109/MAP.2024.3411480Search in Google Scholar
Prabakaran, D., Sheela, K. (2021). A strong authentication for fortifying wireless healthcare sensor network using elliptical curve cryptography. In 2021 IEEE Mysore Sub Section International Conference (MysuruCon). IEEE, 249–254. https://doi.org/10.1109/MysuruCon52639.2021.9641546PrabakaranD.SheelaK.2021A strong authentication for fortifying wireless healthcare sensor network using elliptical curve cryptographyIn2021 IEEE Mysore Sub Section International Conference (MysuruCon)IEEE249254https://doi.org/10.1109/MysuruCon52639.2021.9641546Search in Google Scholar
Batool, A., Byun, Y.-C. (2024). Toward improving breast cancer classification using an adaptive voting ensemble learning algorithm. IEEE Access, 12, 12869–12882. https://doi.org/10.1109/ACCESS.2024.3356602BatoolA.ByunY.-C.2024Toward improving breast cancer classification using an adaptive voting ensemble learning algorithmIEEE Access121286912882https://doi.org/10.1109/ACCESS.2024.3356602Search in Google Scholar
Xie, X., Wu, L., Su, Z., Sun, Z., Cao, X., Hou, Y. (2024). CORONet: A cross-sequence joint representation and hypergraph convolutional network for classifying molecular subtypes of breast cancer using incomplete DCE-MRI. IEEE Journal of Biomedical and Health Informatics, 28 (4), 2103–2114. https://doi.org/10.1109/JBHI.2024.3355111XieX.WuL.SuZ.SunZ.CaoX.HouY.2024CORONet: A cross-sequence joint representation and hypergraph convolutional network for classifying molecular subtypes of breast cancer using incomplete DCE-MRIIEEE Journal of Biomedical and Health Informatics28421032114https://doi.org/10.1109/JBHI.2024.3355111Search in Google Scholar
Tiryaki, V. M., Tutkun, N. (2024). Breast cancer mass classification using machine learning, binary-coded genetic algorithms and an ensemble of deep transfer learning. The Computer Journal, 67 (3), 1111–1125. https://doi.org/10.1093/comjnl/bxad046TiryakiV. M.TutkunN.2024Breast cancer mass classification using machine learning, binary-coded genetic algorithms and an ensemble of deep transfer learningThe Computer Journal67311111125https://doi.org/10.1093/comjnl/bxad046Search in Google Scholar
Li, Z.-Z., Wang, F.-L., Qin, F., Yusoff, Y. B., Zain, A. M. (2024). Feature selection of gene expression data using a modified artificial fish swarm algorithm with population variation. IEEE Access, 12, 72688–72706. https://doi.org/10.1109/ACCESS.2024.3402652LiZ.-Z.WangF.-L.QinF.YusoffY. B.ZainA. M.2024Feature selection of gene expression data using a modified artificial fish swarm algorithm with population variationIEEE Access127268872706https://doi.org/10.1109/ACCESS.2024.3402652Search in Google Scholar
Basaad, A., Basurra, S., Vakaj, E., Aleskandarany, M., Abdelsamea, M. M. (2024). GraphX-Net: A graph neural network-based Shapley values for predicting breast cancer occurrence. IEEE Access, 12, 93993–94007. https://doi.org/10.1109/ACCESS.2024.3424526BasaadA.BasurraS.VakajE.AleskandaranyM.AbdelsameaM. M.2024GraphX-Net: A graph neural network-based Shapley values for predicting breast cancer occurrenceIEEE Access129399394007https://doi.org/10.1109/ACCESS.2024.3424526Search in Google Scholar
Supriya, Y., Chengoden, R. (2024). Breast cancer prediction using Shapely and game theory in federated learning environment. IEEE Access, 12, 123018–123037. https://doi.org/10.1109/ACCESS.2024.3424934SupriyaY.ChengodenR.2024Breast cancer prediction using Shapely and game theory in federated learning environmentIEEE Access12123018123037https://doi.org/10.1109/ACCESS.2024.3424934Search in Google Scholar
Chen, Q., Zhang, J., Meng, R., Zhou, L., Li, Z., Feng, Q. (2024). Modality-specific information disentanglement from multi-parametric MRI for breast tumor segmentation and computer-aided diagnosis. IEEE Transactions on Medical Imaging, 43 (5), 1958–1971. https://doi.org/10.1109/TMI.2024.3352648ChenQ.ZhangJ.MengR.ZhouL.LiZ.FengQ.2024Modality-specific information disentanglement from multi-parametric MRI for breast tumor segmentation and computer-aided diagnosisIEEE Transactions on Medical Imaging43519581971https://doi.org/10.1109/TMI.2024.3352648Search in Google Scholar
Furtney, I., Bradley, R., Kabuka, M. R. (2023). Patient graph deep learning to predict breast cancer molecular subtype. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20 (5), 3117–3127. https://doi.org/10.1109/TCBB.2023.3290394FurtneyI.BradleyR.KabukaM. R.2023Patient graph deep learning to predict breast cancer molecular subtypeIEEE/ACM Transactions on Computational Biology and Bioinformatics20531173127https://doi.org/10.1109/TCBB.2023.3290394Search in Google Scholar
Wang, S., Sun, K., Wang. L., Qu, L., Yan, F., Wang, Q. (2023). Breast tumor segmentation in DCE-MRI with tumor sensitive synthesis. IEEE Transactions on Neural Networks and Learning Systems, 34 (8), 4990–5001. https://doi.org/10.1109/TNNLS.2021.3129781WangS.SunK.WangL.QuL.YanF.WangQ.2023Breast tumor segmentation in DCE-MRI with tumor sensitive synthesisIEEE Transactions on Neural Networks and Learning Systems34849905001https://doi.org/10.1109/TNNLS.2021.3129781Search in Google Scholar
Panigrahi, A., Pati, A., Sahu, B., Das, M. N., Nayak, D. S. K., Sahoo, G. (2023). En-MinWhale: An ensemble approach based on MRMR and whale optimization for cancer diagnosis. IEEE Access, 11, 113526–113542. https://doi.org/10.1109/ACCESS.2023.3318261PanigrahiA.PatiA.SahuB.DasM. N.NayakD. S. K.SahooG.2023En-MinWhale: An ensemble approach based on MRMR and whale optimization for cancer diagnosisIEEE Access11113526113542https://doi.org/10.1109/ACCESS.2023.3318261Search in Google Scholar
Thakur, T., Batra, I., Malik, A., Ghimire, D., Kim, S.-H., Sanwar Hosen, A. S. M. (2023). RNN-CNN based cancer prediction model for gene expression. IEEE Access, 11, 131024–131044. https://doi.org/10.1109/ACCESS.2023.3332479ThakurT.BatraI.MalikA.GhimireD.KimS.-H.Sanwar HosenA. S. M.2023RNN-CNN based cancer prediction model for gene expressionIEEE Access11131024131044https://doi.org/10.1109/ACCESS.2023.3332479Search in Google Scholar
Almaslukh, B. (2024). A reliable breast cancer diagnosis approach using an optimized deep learning and conformal prediction. Biomedical Signal Processing and Control, 98, 106743. https://doi.org/10.1016/j.bspc.2024.106743AlmaslukhB.2024A reliable breast cancer diagnosis approach using an optimized deep learning and conformal predictionBiomedical Signal Processing and Control98106743https://doi.org/10.1016/j.bspc.2024.106743Search in Google Scholar
Crosby, D., Bhatia, S., Brindle, K. M., Coussens, L. M., Dive, C., Emberton, M., Esener, S., Fitzgerald, R. C., Gambhir, S. S., Kuhn, P., Rebbeck, T. R., Balasubramanian, S. (2022). Early detection of cancer. Science, 375 (6586). https://doi.org/10.1126/science.aay9040CrosbyD.BhatiaS.BrindleK. M.CoussensL. M.DiveC.EmbertonM.EsenerS.FitzgeraldR. C.GambhirS. S.KuhnP.RebbeckT. R.BalasubramanianS.2022Early detection of cancerScience3756586https://doi.org/10.1126/science.aay9040Search in Google Scholar
Rashid, T. A., Majidpour, J., Thinakaran, R., Batumalay, M., Arrova Dewi, D., Hassan, B. A. (2024). NSGA-II-DL: Metaheuristic optimal feature selection with deep learning framework for HER2 classification in breast cancer. IEEE Access, 12, 38885–38898. https://doi.org/10.1109/ACCESS.2024.3374890RashidT. A.MajidpourJ.ThinakaranR.BatumalayM.Arrova DewiD.HassanB. A.2024NSGA-II-DL: Metaheuristic optimal feature selection with deep learning framework for HER2 classification in breast cancerIEEE Access123888538898https://doi.org/10.1109/ACCESS.2024.3374890Search in Google Scholar
Mirimoghaddam, M. M., Majidpour, J., Pashaei, F., Arabalibeik, H., Samizadeh, E., Roshan, N. M., Rashid, T. A. (2024). HER2GAN: Overcome the scarcity of HER2 breast cancer dataset based on transfer learning and GAN model. Clinical Breast Cancer, 24 (1), 53–64. https://doi.org/10.1016/j.clbc.2023.09.014MirimoghaddamM. M.MajidpourJ.PashaeiF.ArabalibeikH.SamizadehE.RoshanN. M.RashidT. A.2024HER2GAN: Overcome the scarcity of HER2 breast cancer dataset based on transfer learning and GAN modelClinical Breast Cancer2415364https://doi.org/10.1016/j.clbc.2023.09.014Search in Google Scholar
Issa, A. S., Ali, Y. H., Rashid, T. A. (2023). Review on hybrid swarm algorithms for feature selection. Iraqi Journal of Science, 64 (10), 5331–5344. https://doi.org/10.24996/ijs.2023.64.10.38IssaA. S.AliY. H.RashidT. A.2023Review on hybrid swarm algorithms for feature selectionIraqi Journal of Science641053315344https://doi.org/10.24996/ijs.2023.64.10.38Search in Google Scholar
Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A. (2020). Dataset of breast ultrasound images. Data in Brief, 28, 104863. https://doi.org/10.1016/j.dib.2019.104863Al-DhabyaniW.GomaaM.KhaledH.FahmyA.2020Dataset of breast ultrasound imagesData in Brief28104863https://doi.org/10.1016/j.dib.2019.104863Search in Google Scholar
Long, J., Zheng, Z., Wang, J., Ng, C. K., Liu, C., Ji, W. (2024). Decision tree based automated detection of breast cancer. In 2024 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE International Conference on Robotics, Automation and Mechatronics (RAM). IEEE, 549–554. https://doi.org/10.1109/CIS-RAM61939.2024.10673070LongJ.ZhengZ.WangJ.NgC. K.LiuC.JiW.2024Decision tree based automated detection of breast cancerIn2024 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE International Conference on Robotics, Automation and Mechatronics (RAM)IEEE549554https://doi.org/10.1109/CIS-RAM61939.2024.10673070Search in Google Scholar
Rahman, S., Siregar, D., Syah, R. B. Y., Setiawan, H., Maulana, A. E., Hamsiah. (2023). The effective breast cancer classification with the random forest algorithm. In 2023 International Conference of Computer Science and Information Technology (ICOSNIKOM). IEEE. https://doi.org/10.1109/ICoSNIKOM60230.2023.10364529RahmanS.SiregarD.SyahR. B. Y.SetiawanH.MaulanaA. E.Hamsiah2023The effective breast cancer classification with the random forest algorithmIn2023 International Conference of Computer Science and Information Technology (ICOSNIKOM)IEEEhttps://doi.org/10.1109/ICoSNIKOM60230.2023.10364529Search in Google Scholar
Khater, T., Hussain, A., Bendardaf, R., Talaat, I. M., Tawfik. H., Ansari, S., Mahmoud, S. (2025). An explainable artificial intelligence model for the classification of breast cancer. In IEEE Access, 13, 5618–5633. https://doi.org/10.1109/ACCESS.2023.3308446KhaterT.HussainA.BendardafR.TalaatI. M.TawfikH.AnsariS.MahmoudS.2025An explainable artificial intelligence model for the classification of breast cancerInIEEE Access1356185633https://doi.org/10.1109/ACCESS.2023.3308446Search in Google Scholar
Maouche, I., Terrissa, L. S., Benmohammed K., Zerhouni, N. (2023). An explainable AI approach for breast cancer metastasis prediction based on clinicopathological data. In IEEE Transactions on Biomedical Engineering, 70 (12), 3321–3329. https://doi.org/10.1109/TBME.2023.3282840MaoucheI.TerrissaL. S.BenmohammedK.ZerhouniN.2023An explainable AI approach for breast cancer metastasis prediction based on clinicopathological dataInIEEE Transactions on Biomedical Engineering701233213329https://doi.org/10.1109/TBME.2023.3282840Search in Google Scholar
Shukla, V., Kaarthika, Mathur, A., Narayan P., Kishor, K. (2025). A multi-modal approach for the molecular subtype classification of breast cancer by using Vision Transformer and novel SVM polyvariant kernel. In IEEE Access, 13, 97545–97558. https://doi.org/10.1109/ACCESS.2025.3575126ShuklaV.KaarthikaMathurA.NarayanP.KishorK.2025A multi-modal approach for the molecular subtype classification of breast cancer by using Vision Transformer and novel SVM polyvariant kernelInIEEE Access139754597558https://doi.org/10.1109/ACCESS.2025.3575126Search in Google Scholar