This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Achouch, M., Dimitrova, M., Ziane, K., Karganroudi, S. S., Dhouib, R., Ibrahim, H., Adda, M. (2022). On predictive maintenance in Industry 4.0: Overview, models, and challenges. Applied Sciences Review, 12 (16), 8081. https://doi.org/10.3390/app12168081AchouchM.DimitrovaM.ZianeK.KarganroudiS. S.DhouibR.IbrahimH.AddaM.2022On predictive maintenance in Industry 4.0: Overview, models, and challengesApplied Sciences Review12168081https://doi.org/10.3390/app12168081Search in Google Scholar
Lindh, T. (2003). On the condition monitoring of induction machines. Doctoral Dissertation, Lappeenranta University of Technology, Lappeenranta, Finland. https://urn.fi/URN:ISBN:951-764-843-XLindhT.2003On the condition monitoring of induction machinesDoctoral Dissertation, Lappeenranta University of Technology, Lappeenranta, Finland. https://urn.fi/URN:ISBN:951-764-843-XSearch in Google Scholar
Tavner, P. J. (2008). Review of condition monitoring of rotating electrical machines. IET Electric Power Applications, 2 (4), 215–247. https://doi.org/10.1049/iet-epa:20070280TavnerP. J.2008Review of condition monitoring of rotating electrical machinesIET Electric Power Applications24215247https://doi.org/10.1049/iet-epa:20070280Search in Google Scholar
Sarma, N., Tuohy, P., Djurovic, S. (2023). Condition monitoring of rotating electrical machines. In Encyclopedia of Electrical and Electronic Power Engineering. Elsevier, 143–154. https://doi.org/10.1016/b978-0-12-821204-2.00136-7SarmaN.TuohyP.DjurovicS.2023Condition monitoring of rotating electrical machinesInEncyclopedia of Electrical and Electronic Power EngineeringElsevier143154https://doi.org/10.1016/b978-0-12-821204-2.00136-7Search in Google Scholar
Motor Reliability Working Group. (1985). Report of large motor reliability survey of industrial and commercial installations, Part I. IEEE Transactions on Industry Applications, IA-21 (4), 853–864. https://doi.org/10.1109/TIA.1985.349532Motor Reliability Working Group1985Report of large motor reliability survey of industrial and commercial installations, Part IIEEE Transactions on Industry ApplicationsIA-21 (4),853864https://doi.org/10.1109/TIA.1985.349532Search in Google Scholar
Motor Reliability Working Group. (1985). Report of large motor reliability survey of industrial and commercial installations, Part II. IEEE Transactions on Industry Applications, IA-21 (4), 865–872. https://doi.org/10.1109/TIA.1985.349533Motor Reliability Working Group1985Report of large motor reliability survey of industrial and commercial installations, Part IIIEEE Transactions on Industry ApplicationsIA-21 (4),865872https://doi.org/10.1109/TIA.1985.349533Search in Google Scholar
Albrecht, P. F., Appiarius, J. C., McCoy, R. M., Owen, E. L., Sharma, D. K. (1986). Assessment of the reliability of motors in utility applications – updated. IEEE Transactions on Energy Conversion, EC-1 (1), 39–46. https://doi.org/10.1109/TEC.1986.4765668AlbrechtP. F.AppiariusJ. C.McCoyR. M.OwenE. L.SharmaD. K.1986Assessment of the reliability of motors in utility applications – updatedIEEE Transactions on Energy ConversionEC-1 (1),3946https://doi.org/10.1109/TEC.1986.4765668Search in Google Scholar
Thorsen, O. V., Dalva, M. (1995). A survey of faults on induction motors in offshore oil industry, petrochemical industry, gas terminals, and oil refineries. IEEE Transactions on Industry Applications, 31 (5), 1186–1196. https://doi.org/10.1109/28.464536ThorsenO. V.DalvaM.1995A survey of faults on induction motors in offshore oil industry, petrochemical industry, gas terminals, and oil refineriesIEEE Transactions on Industry Applications31511861196https://doi.org/10.1109/28.464536Search in Google Scholar
Shin, K., Hammond, J. (2008). Fundamentals of Signal Processing for Sound and Vibration Engineers. Wiley, ISBN 978-0-470-51188-6.ShinK.HammondJ.2008Fundamentals of Signal Processing for Sound and Vibration EngineersWileyISBN 978-0-470-51188-6.Search in Google Scholar
Trendafilova, I. (2010). An automated procedure for detection and identification of ball bearing damage using multivariate statistics and pattern recognition. Mechanical Systems and Signal Processing, 24 (6), 1858–1869. https://doi.org/10.1016/j.ymssp.2010.02.005TrendafilovaI.2010An automated procedure for detection and identification of ball bearing damage using multivariate statistics and pattern recognitionMechanical Systems and Signal Processing24618581869https://doi.org/10.1016/j.ymssp.2010.02.005Search in Google Scholar
Marić, D., Duspara, M., Šolić, T., Samardžić, I. (2019). Application of SVM models for classification of welded joints. Technical Gazette, 26 (2), 533–538. https://doi.org/10.17559/TV-20180305095253MarićD.DusparaM.ŠolićT.SamardžićI.2019Application of SVM models for classification of welded jointsTechnical Gazette262533538https://doi.org/10.17559/TV-20180305095253Search in Google Scholar
Rozing, G., Duspara, M., Dudic, B., Savkovic, B. (2023). Research on the effect of load and rotation speed on resistance to combined wear of stainless steels using ANOVA analysis. Materials, 16 (12), 4284. https://doi.org/10.3390/ma16124284RozingG.DusparaM.DudicB.SavkovicB.2023Research on the effect of load and rotation speed on resistance to combined wear of stainless steels using ANOVA analysisMaterials16124284https://doi.org/10.3390/ma16124284Search in Google Scholar
Pandian, A., Ali, A. (2010). A review of recent trends in machine diagnosis and prognosis algorithms. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE. https://doi.org/10.1109/NABIC.2009.5393625PandianA.AliA.2010A review of recent trends in machine diagnosis and prognosis algorithmsIn2009 World Congress on Nature & Biologically Inspired Computing (NaBIC)IEEE. https://doi.org/10.1109/NABIC.2009.5393625Search in Google Scholar
Liu, R., Yang, B., Zio, E., Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47. https://doi.org/10.1016/j.ymssp.2018.02.016LiuR.YangB.ZioE.ChenX.2018Artificial intelligence for fault diagnosis of rotating machinery: A reviewMechanical Systems and Signal Processing1083347https://doi.org/10.1016/j.ymssp.2018.02.016Search in Google Scholar
Liu, X., Zhou, Q., Zhao, J., Shen, H., Xiong, X. (2019). Fault diagnosis of rotating machinery under noisy environment conditions based on a 1-D convolutional autoencoder and 1-D convolutional neural network. Sensors, 19 (4), 972. https://doi.org/10.3390/s19040972LiuX.ZhouQ.ZhaoJ.ShenH.XiongX.2019Fault diagnosis of rotating machinery under noisy environment conditions based on a 1-D convolutional autoencoder and 1-D convolutional neural networkSensors194972https://doi.org/10.3390/s19040972Search in Google Scholar
Samanta, B., Al-Balushi, K. R. (2003). Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mechanical Systems and Signal Processing, 17 (2), 317–328. https://doi.org/10.1006/mssp.2001.1462SamantaB.Al-BalushiK. R.2003Artificial neural network based fault diagnostics of rolling element bearings using time-domain featuresMechanical Systems and Signal Processing172317328https://doi.org/10.1006/mssp.2001.1462Search in Google Scholar
Kankar, P. K., Sharma, S. C., Harsha, S. P. (2011). Fault diagnosis of ball bearings using machine learning methods. Expert Systems with Applications, 38 (3), 1876–1886. https://doi.org/10.1016/j.eswa.2010.07.119KankarP. K.SharmaS. C.HarshaS. P.2011Fault diagnosis of ball bearings using machine learning methodsExpert Systems with Applications38318761886https://doi.org/10.1016/j.eswa.2010.07.119Search in Google Scholar
Jenkins, C. D. (2019). Bearing fault detection and wear estimation using machine learning. Technical Report LA-UR-19-27700. https://doi.org/10.2172/1557163JenkinsC. D.2019Bearing fault detection and wear estimation using machine learningTechnical Report LA-UR-19-27700. https://doi.org/10.2172/1557163Search in Google Scholar
Sawaqed, L. S., Alrayes, A. M. (2020). Bearing fault diagnostic using machine learning algorithms. Progress in Artificial Intelligence, 9 (4), 341–350. https://doi.org/10.1007/s13748-020-00217-zSawaqedL. S.AlrayesA. M.2020Bearing fault diagnostic using machine learning algorithmsProgress in Artificial Intelligence94341350https://doi.org/10.1007/s13748-020-00217-zSearch in Google Scholar
Zhang, S., Zhang, S., Wang, B., Habetler, T. G. (2020). Deep learning algorithms for bearing fault diagnostics—A comprehensive review. IEEE Access, 8, 29857–29881. https://doi.org/10.1109/ACCESS.2020.2972859ZhangS.ZhangS.WangB.HabetlerT. G.2020Deep learning algorithms for bearing fault diagnostics—A comprehensive reviewIEEE Access82985729881https://doi.org/10.1109/ACCESS.2020.2972859Search in Google Scholar
Teotrakool, K., Devaney, M. J., Eren, L. (2008). Bearing fault detection in adjustable speed drives via a support vector machine with feature selection using a genetic algorithm. In 2008 IEEE Instrumentation and Measurement Technology Conference. IEEE, 1129–1133. https://doi.org/10.1109/IMTC.2008.4547208TeotrakoolK.DevaneyM. J.ErenL.2008Bearing fault detection in adjustable speed drives via a support vector machine with feature selection using a genetic algorithmIn2008 IEEE Instrumentation and Measurement Technology ConferenceIEEE,11291133https://doi.org/10.1109/IMTC.2008.4547208Search in Google Scholar
Konar, P., Chattopadhyay, P. (2011). Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs). Applied Soft Computing, 11 (6), 4203–4211. https://doi.org/10.1016/j.asoc.2011.03.014KonarP.ChattopadhyayP.2011Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs)Applied Soft Computing11642034211https://doi.org/10.1016/j.asoc.2011.03.014Search in Google Scholar
Benkedjouh, T., Medjaher, K., Zerhouni, N., Rechak, S. (2012). Fault prognostic of bearings by using support vector data description. In 2012 IEEE Conference on Prognostics and Health Management. IEEE, 1–7. https://doi.org/10.1109/ICPHM.2012.6299511BenkedjouhT.MedjaherK.ZerhouniN.RechakS.2012Fault prognostic of bearings by using support vector data descriptionIn2012 IEEE Conference on Prognostics and Health ManagementIEEE,17https://doi.org/10.1109/ICPHM.2012.6299511Search in Google Scholar
Kang, M., Kim, J., Kim, J. M., Tan, A. C., Kim, E. Y., Choi, B. K. (2015). Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysis. IEEE Transactions on Power Electronics, 30 (5), 2786–2797. https://doi.org/10.1109/TPEL.2014.2358494KangM.KimJ.KimJ. M.TanA. C.KimE. Y.ChoiB. K.2015Reliable fault diagnosis for low-speed bearings using individually trained support vector machines with kernel discriminative feature analysisIEEE Transactions on Power Electronics30527862797https://doi.org/10.1109/TPEL.2014.2358494Search in Google Scholar
Song, W., Xiang, J. (2017). A method using numerical simulation and support vector machine to detect faults in bearings. In 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). IEEE, 603–607. https://doi.org/10.1109/SDPC.2017.118SongW.XiangJ.2017A method using numerical simulation and support vector machine to detect faults in bearingsIn2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)IEEE,603607https://doi.org/10.1109/SDPC.2017.118Search in Google Scholar
Pandarakone, S. E., Mizuno, Y., Nakamura, H. (2019). Evaluating the progression and orientation of scratches on outer-raceway bearing using a pattern recognition method. IEEE Transactions on Industrial Electronics, 66 (2), 1307–1314. https://doi.org/10.1109/TIE.2018.2833025PandarakoneS. E.MizunoY.NakamuraH.2019Evaluating the progression and orientation of scratches on outer-raceway bearing using a pattern recognition methodIEEE Transactions on Industrial Electronics66213071314https://doi.org/10.1109/TIE.2018.2833025Search in Google Scholar
King, R. D., Feng, C., Sutherland, A. (1995). StatLog: Comparison of classification algorithms on large real-world problems. Applied Artificial Intelligence, 9 (3), 289–333. https://doi.org/10.1080/08839519508945477KingR. D.FengC.SutherlandA.1995StatLog: Comparison of classification algorithms on large real-world problemsApplied Artificial Intelligence93289333https://doi.org/10.1080/08839519508945477Search in Google Scholar
Kohavi, R., John, G. H. (1995). Automatic parameter selection by minimizing estimated error. In Machine Learning Proceedings 1995. Morgan Kaufmann Publishers, 304–312. https://doi.org/10.1016/B978-1-55860-377-6.50045-1KohaviR.JohnG. H.1995Automatic parameter selection by minimizing estimated errorInMachine Learning Proceedings 1995Morgan Kaufmann Publishers304312https://doi.org/10.1016/B978-1-55860-377-6.50045-1Search in Google Scholar
Michie, D., Spiegelhalter, D. J., Taylor, C. C. (1994). Machine Learning, Neural and Statistical Classification. Prentice Hall, ISBN 978-0131063600.MichieD.SpiegelhalterD. J.TaylorC. C.1994Machine Learning, Neural and Statistical ClassificationPrentice HallISBN 978-0131063600.Search in Google Scholar
Ripley, B. D. (1993). Statistical aspects of neural networks. In Networks and Chaos - Statistical and Probabilistic Aspects. Champman & Hall, 40–123. ISBN 0-412-46530-2.RipleyB. D.1993Statistical aspects of neural networksInNetworks and Chaos - Statistical and Probabilistic AspectsChampman & Hall40123ISBN 0-412-46530-2.Search in Google Scholar
Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) (2019). Automated Machine Learning: Methods, Systems, Challenges. Springer, ISBN 978-3-030-05318-5. https://doi.org/10.1007/978-3-030-05318-5HutterF.KotthoffL.VanschorenJ.(eds.)2019Automated Machine Learning: Methods, Systems, ChallengesSpringerISBN 978-3-030-05318-5. https://doi.org/10.1007/978-3-030-05318-5Search in Google Scholar
Shahriari, B., Swersky, K., Wang, Z., Adams, R., de Freitas, N. (2016). Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104 (1), 148–175. https://doi.org/10.1109/JPROC.2015.2494218ShahriariB.SwerskyK.WangZ.AdamsR.de FreitasN.2016Taking the human out of the loop: A review of Bayesian optimizationProceedings of the IEEE1041148175https://doi.org/10.1109/JPROC.2015.2494218Search in Google Scholar
Brochu, E., Cora, V. M., De Freitas, N. (2010). A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv, 1012.2599. https://doi.org/10.48550/arXiv.1012.2599BrochuE.CoraV. M.De FreitasN.2010A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learningarXiv, 1012.2599. https://doi.org/10.48550/arXiv.1012.2599Search in Google Scholar