Acceso abierto

Optimization Driven Variational Autoencoder GAN for Artifact Reduction in EEG Signals for Improved Neurological Disorder and Disability Assessment

, , , , ,  y   
24 feb 2025

Cite
Descargar portada

Raghavendra, U., Acharya, U. R., Adeli, H. (2020). Artificial intelligence techniques for automated diagnosis of neurological disorders. European Neurology, 82 (1–3), 41–64. https://doi.org/10.1159/000504292 RaghavendraU. AcharyaU. R. AdeliH. 2020 Artificial intelligence techniques for automated diagnosis of neurological disorders European Neurology 82 1–3 41 64 https://doi.org/10.1159/000504292 Search in Google Scholar

Jayanthi, J., Kavitha, M., Jayasankar, T., Britto, A. S. F., Prakash, N. B. (2021). Segmentation of brain tumor magnetic resonance images using a teaching-learning optimization algorithm. Computers, Materials & Continua, 68 (3), 4191–4203. https://doi.org/10.32604/cmc.2021.012252 JayanthiJ. KavithaM. JayasankarT. BrittoA. S. F. PrakashN. B. 2021 Segmentation of brain tumor magnetic resonance images using a teaching-learning optimization algorithm Computers, Materials & Continua 68 3 4191 4203 https://doi.org/10.32604/cmc.2021.012252 Search in Google Scholar

Stephe, S., Jayasankar, T., Kumar, K. V. (2022). Motor imagery EEG recognition using deep generative adversarial network with EMD for BCI applications. Technical Gazette, 29 (1), 92–100. https://doi.org/10.17559/TV-20210121112228 StepheS. JayasankarT. KumarK. V. 2022 Motor imagery EEG recognition using deep generative adversarial network with EMD for BCI applications Technical Gazette 29 1 92 100 https://doi.org/10.17559/TV-20210121112228 Search in Google Scholar

Tawhid, M. N. A., Siuly, S., Wang, K., Wang, H. (2024). GENet: A generic neural network for detecting various neurological disorders from EEG. IEEE Transactions on Cognitive and Developmental Systems, 16 (5), 1829–1842. https://doi.org/10.1109/TCDS.2024.3386364 TawhidM. N. A. SiulyS. WangK. WangH. 2024 GENet: A generic neural network for detecting various neurological disorders from EEG IEEE Transactions on Cognitive and Developmental Systems 16 5 1829 1842 https://doi.org/10.1109/TCDS.2024.3386364 Search in Google Scholar

Ouhmida, A., Saleh, S., Ammar, A., Raihani, A., Cherradi, B. (2024). HEFS-MLDR: A novel hybrid ensemble feature selection framework for improved deep neural network architecture in the diagnosis of Parkinson’s disease. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-20276-x OuhmidaA. SalehS. AmmarA. RaihaniA. CherradiB. 2024 HEFS-MLDR: A novel hybrid ensemble feature selection framework for improved deep neural network architecture in the diagnosis of Parkinson’s disease Multimedia Tools and Applications https://doi.org/10.1007/s11042-024-20276-x Search in Google Scholar

Al Fahoum, A., Zyout, A. (2024). Wavelet transform, reconstructed phase space, and deep learning neural networks for EEG-based schizophrenia detection. International Journal of Neural Systems, 34 (9), 2450046. https://doi.org/10.1142/S0129065724500461 Al FahoumA. ZyoutA. 2024 Wavelet transform, reconstructed phase space, and deep learning neural networks for EEG-based schizophrenia detection International Journal of Neural Systems 34 9 2450046 https://doi.org/10.1142/S0129065724500461 Search in Google Scholar

Veeranki, Y. R., McNaboe, R., Posada-Quintero, H. F. (2023). EEG-based seizure detection using variable-frequency complex demodulation and convolutional neural networks. Signals, 4 (4), 816–835. https://doi.org/10.3390/signals4040045 VeerankiY. R. McNaboeR. Posada-QuinteroH. F. 2023 EEG-based seizure detection using variable-frequency complex demodulation and convolutional neural networks Signals 4 4 816 835 https://doi.org/10.3390/signals4040045 Search in Google Scholar

Shah, S. J. H., Albishri, A., Kang, S. S., Lee, Y., Sponheim, S. R., Shim, M. (2023). ETSNet: A deep neural network for EEG-based temporal–spatial pattern recognition in psychiatric disorder and emotional distress classification. Computers in Biology and Medicine, 158, 106857. https://doi.org/10.1016/j.compbiomed.2023.106857 ShahS. J. H. AlbishriA. KangS. S. LeeY. SponheimS. R. ShimM. 2023 ETSNet: A deep neural network for EEG-based temporal–spatial pattern recognition in psychiatric disorder and emotional distress classification Computers in Biology and Medicine 158 106857 https://doi.org/10.1016/j.compbiomed.2023.106857 Search in Google Scholar

Fouad, I. A., Labib, F. E.-Z. M. (2023). Identification of Alzheimer’s disease from central lobe EEG signals utilizing machine learning and residual neural network. Biomedical Signal Processing and Control, 86 (B), 105266. https://doi.org/10.1016/j.bspc.2023.105266 FouadI. A. LabibF. E.-Z. M. 2023 Identification of Alzheimer’s disease from central lobe EEG signals utilizing machine learning and residual neural network Biomedical Signal Processing and Control 86 B 105266 https://doi.org/10.1016/j.bspc.2023.105266 Search in Google Scholar

Holmes, G. L. (2012). Consequences of epilepsy through the ages: When is the die cast? Epilepsy Currents, 12 (4_suppl), 4–6. https://doi.org/10.5698/1535-7511-12.4s.4 HolmesG. L. 2012 Consequences of epilepsy through the ages: When is the die cast? Epilepsy Currents 12 4_suppl 4 6 https://doi.org/10.5698/1535-7511-12.4s.4 Search in Google Scholar

Kaur, C., Singh, P., Sahni, S. (2021). EEG artifact removal system for depression using a hybrid denoising approach. Basic and Clinical Neuroscience, 12 (4), 465–476. https://doi.org/10.32598/bcn.2021.1388.2 KaurC. SinghP. SahniS. 2021 EEG artifact removal system for depression using a hybrid denoising approach Basic and Clinical Neuroscience 12 4 465 476 https://doi.org/10.32598/bcn.2021.1388.2 Search in Google Scholar

Zhao, X., Liu, D., Ma, L., Ai, Q., Liu, Q., Xie, S. (2021). EEG signals de-noising with wavelet by optimizing threshold based on fruit fly optimization. In ICNCC '20: Proceedings of the 2020 9th International Conference on Networks, Communication and Computing. New York, US: Association for Computing Machinery, 71–77. https://doi.org/10.1145/3447654.3447665 ZhaoX. LiuD. MaL. AiQ. LiuQ. XieS. 2021 EEG signals de-noising with wavelet by optimizing threshold based on fruit fly optimization In ICNCC '20: Proceedings of the 2020 9th International Conference on Networks, Communication and Computing New York, US Association for Computing Machinery 71 77 https://doi.org/10.1145/3447654.3447665 Search in Google Scholar

Chen, X., Xu, X., Liu, A., McKeown, M. J., Wang, Z. J. (2018). The use of multivariate EMD and CCA for denoising muscle artefacts from few-channel EEG recordings. IEEE Transactions on Instrumentation and Measurement, 67 (2), 359–370. https://doi.org/10.1109/TIM.2017.2759398 ChenX. XuX. LiuA. McKeownM. J. WangZ. J. 2018 The use of multivariate EMD and CCA for denoising muscle artefacts from few-channel EEG recordings IEEE Transactions on Instrumentation and Measurement 67 2 359 370 https://doi.org/10.1109/TIM.2017.2759398 Search in Google Scholar

Gorjan, D., Gramann, K., Pauw, K. D., Marusic, U. (2022). Removal of movement-induced EEG artefacts: Current state of the art and guidelines. Journal of Neural Engineering, 19 (1), 011004. https://doi.org/10.1088/1741-2552/ac542c GorjanD. GramannK. PauwK. D. MarusicU. 2022 Removal of movement-induced EEG artefacts: Current state of the art and guidelines Journal of Neural Engineering 19 1 011004 https://doi.org/10.1088/1741-2552/ac542c Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Ingeniería, Ingeniería eléctrica, Ingeniería de Control, metrología y ensayos