This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Raghavendra, U., Acharya, U. R., Adeli, H. (2020). Artificial intelligence techniques for automated diagnosis of neurological disorders. European Neurology, 82 (1–3), 41–64. https://doi.org/10.1159/000504292RaghavendraU.AcharyaU. R.AdeliH.2020Artificial intelligence techniques for automated diagnosis of neurological disordersEuropean Neurology821–34164https://doi.org/10.1159/000504292Search in Google Scholar
Jayanthi, J., Kavitha, M., Jayasankar, T., Britto, A. S. F., Prakash, N. B. (2021). Segmentation of brain tumor magnetic resonance images using a teaching-learning optimization algorithm. Computers, Materials & Continua, 68 (3), 4191–4203. https://doi.org/10.32604/cmc.2021.012252JayanthiJ.KavithaM.JayasankarT.BrittoA. S. F.PrakashN. B.2021Segmentation of brain tumor magnetic resonance images using a teaching-learning optimization algorithmComputers, Materials & Continua68341914203https://doi.org/10.32604/cmc.2021.012252Search in Google Scholar
Stephe, S., Jayasankar, T., Kumar, K. V. (2022). Motor imagery EEG recognition using deep generative adversarial network with EMD for BCI applications. Technical Gazette, 29 (1), 92–100. https://doi.org/10.17559/TV-20210121112228StepheS.JayasankarT.KumarK. V.2022Motor imagery EEG recognition using deep generative adversarial network with EMD for BCI applicationsTechnical Gazette29192100https://doi.org/10.17559/TV-20210121112228Search in Google Scholar
Tawhid, M. N. A., Siuly, S., Wang, K., Wang, H. (2024). GENet: A generic neural network for detecting various neurological disorders from EEG. IEEE Transactions on Cognitive and Developmental Systems, 16 (5), 1829–1842. https://doi.org/10.1109/TCDS.2024.3386364TawhidM. N. A.SiulyS.WangK.WangH.2024GENet: A generic neural network for detecting various neurological disorders from EEGIEEE Transactions on Cognitive and Developmental Systems16518291842https://doi.org/10.1109/TCDS.2024.3386364Search in Google Scholar
Ouhmida, A., Saleh, S., Ammar, A., Raihani, A., Cherradi, B. (2024). HEFS-MLDR: A novel hybrid ensemble feature selection framework for improved deep neural network architecture in the diagnosis of Parkinson’s disease. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-20276-xOuhmidaA.SalehS.AmmarA.RaihaniA.CherradiB.2024HEFS-MLDR: A novel hybrid ensemble feature selection framework for improved deep neural network architecture in the diagnosis of Parkinson’s diseaseMultimedia Tools and Applicationshttps://doi.org/10.1007/s11042-024-20276-xSearch in Google Scholar
Al Fahoum, A., Zyout, A. (2024). Wavelet transform, reconstructed phase space, and deep learning neural networks for EEG-based schizophrenia detection. International Journal of Neural Systems, 34 (9), 2450046. https://doi.org/10.1142/S0129065724500461Al FahoumA.ZyoutA.2024Wavelet transform, reconstructed phase space, and deep learning neural networks for EEG-based schizophrenia detectionInternational Journal of Neural Systems3492450046https://doi.org/10.1142/S0129065724500461Search in Google Scholar
Veeranki, Y. R., McNaboe, R., Posada-Quintero, H. F. (2023). EEG-based seizure detection using variable-frequency complex demodulation and convolutional neural networks. Signals, 4 (4), 816–835. https://doi.org/10.3390/signals4040045VeerankiY. R.McNaboeR.Posada-QuinteroH. F.2023EEG-based seizure detection using variable-frequency complex demodulation and convolutional neural networksSignals44816835https://doi.org/10.3390/signals4040045Search in Google Scholar
Shah, S. J. H., Albishri, A., Kang, S. S., Lee, Y., Sponheim, S. R., Shim, M. (2023). ETSNet: A deep neural network for EEG-based temporal–spatial pattern recognition in psychiatric disorder and emotional distress classification. Computers in Biology and Medicine, 158, 106857. https://doi.org/10.1016/j.compbiomed.2023.106857ShahS. J. H.AlbishriA.KangS. S.LeeY.SponheimS. R.ShimM.2023ETSNet: A deep neural network for EEG-based temporal–spatial pattern recognition in psychiatric disorder and emotional distress classificationComputers in Biology and Medicine158106857https://doi.org/10.1016/j.compbiomed.2023.106857Search in Google Scholar
Fouad, I. A., Labib, F. E.-Z. M. (2023). Identification of Alzheimer’s disease from central lobe EEG signals utilizing machine learning and residual neural network. Biomedical Signal Processing and Control, 86 (B), 105266. https://doi.org/10.1016/j.bspc.2023.105266FouadI. A.LabibF. E.-Z. M.2023Identification of Alzheimer’s disease from central lobe EEG signals utilizing machine learning and residual neural networkBiomedical Signal Processing and Control86B105266https://doi.org/10.1016/j.bspc.2023.105266Search in Google Scholar
Holmes, G. L. (2012). Consequences of epilepsy through the ages: When is the die cast? Epilepsy Currents, 12 (4_suppl), 4–6. https://doi.org/10.5698/1535-7511-12.4s.4HolmesG. L.2012Consequences of epilepsy through the ages: When is the die cast?Epilepsy Currents124_suppl46https://doi.org/10.5698/1535-7511-12.4s.4Search in Google Scholar
Kaur, C., Singh, P., Sahni, S. (2021). EEG artifact removal system for depression using a hybrid denoising approach. Basic and Clinical Neuroscience, 12 (4), 465–476. https://doi.org/10.32598/bcn.2021.1388.2KaurC.SinghP.SahniS.2021EEG artifact removal system for depression using a hybrid denoising approachBasic and Clinical Neuroscience124465476https://doi.org/10.32598/bcn.2021.1388.2Search in Google Scholar
Zhao, X., Liu, D., Ma, L., Ai, Q., Liu, Q., Xie, S. (2021). EEG signals de-noising with wavelet by optimizing threshold based on fruit fly optimization. In ICNCC '20: Proceedings of the 2020 9th International Conference on Networks, Communication and Computing. New York, US: Association for Computing Machinery, 71–77. https://doi.org/10.1145/3447654.3447665ZhaoX.LiuD.MaL.AiQ.LiuQ.XieS.2021EEG signals de-noising with wavelet by optimizing threshold based on fruit fly optimizationInICNCC '20: Proceedings of the 2020 9th International Conference on Networks, Communication and ComputingNew York, USAssociation for Computing Machinery7177https://doi.org/10.1145/3447654.3447665Search in Google Scholar
Chen, X., Xu, X., Liu, A., McKeown, M. J., Wang, Z. J. (2018). The use of multivariate EMD and CCA for denoising muscle artefacts from few-channel EEG recordings. IEEE Transactions on Instrumentation and Measurement, 67 (2), 359–370. https://doi.org/10.1109/TIM.2017.2759398ChenX.XuX.LiuA.McKeownM. J.WangZ. J.2018The use of multivariate EMD and CCA for denoising muscle artefacts from few-channel EEG recordingsIEEE Transactions on Instrumentation and Measurement672359370https://doi.org/10.1109/TIM.2017.2759398Search in Google Scholar
Gorjan, D., Gramann, K., Pauw, K. D., Marusic, U. (2022). Removal of movement-induced EEG artefacts: Current state of the art and guidelines. Journal of Neural Engineering, 19 (1), 011004. https://doi.org/10.1088/1741-2552/ac542cGorjanD.GramannK.PauwK. D.MarusicU.2022Removal of movement-induced EEG artefacts: Current state of the art and guidelinesJournal of Neural Engineering191011004https://doi.org/10.1088/1741-2552/ac542cSearch in Google Scholar