Acceso abierto

Review of Measurement Techniques of Hydrocarbon Flame Equivalence Ratio and Applications of Machine Learning


Cite

[1] Yang, X.F., Yu, M.G., Han, S.X., Qi, B.B. (2021). Effect of equivalence ratio and ignition location on premixed syngas-air explosion in a half-open duct. Fuel, 288 (2), 119724. https://doi.org/10.1016/j.fuel.2020.11972410.1016/j.fuel.2020.119724 Search in Google Scholar

[2] Garcıá-Armingol, T., Ballester, J. (2014). Flame chemiluminescence in premixed combustion of hydron-enriched fuels. International Journal of Hydrogen Energy, 39 (21), 11299-11307. https://doi.org/10.1016/j.ijhydene.2014.05.10910.1016/j.ijhydene.2014.05.109 Search in Google Scholar

[3] Yang, J.B., Gong, Y., Guo, Q., Zhu, H.W., Wang, F.C. Yu, G.S. (2020). Experimental studies of the effects of global equivalence ratio and CO 2 dilution level on the OH* and CH* chemiluminescence in CH 4 /O 2 diffusion flames. Fuel, 278, 118307. https://doi.org/10.1016/j.fuel.2020.11830710.1016/j.fuel.2020.118307 Search in Google Scholar

[4] Kojima, J., Ikeda, Y., Nakajima, T. (2004). Basic aspects of OH(A), CH(A), and C 2 (d) chemiluminescence in the reaction zone of laminar methane–air premixed flames. Combustion and Flame, 140 (1-2), 34-45. https://doi.org/10.1016/j.combustflame.2004.10.00210.1016/j.combustflame.2004.10.002 Search in Google Scholar

[5] Clark, T.P. (1958). Studies of oh, co, ch, and c (sub 2) radiation from laminar and turbulent propane-air and ethylene-air flames. Technical note 4266, National Advisory Committee for Aeronautics, Washington, DC. Search in Google Scholar

[6] Haber, L.C. (2000). An investigation into the origin, measurement and application of chemiluminescent light emissions from premixed flames. MS Thesis, Virginia Polytechnic Institute and State University, Blacksbury, VA. Search in Google Scholar

[7] Weber, J.R., Cuccia, D.J., Johnson, W.R., Bearman, G.H., Durkin, A.J., Hsu, M., Lin, A., Binder, D.K., Wilson, D., Tromberg, B.J. (2011). Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer. Journal of Biomedical Optics, 16 (1), 011015. https://doi.org/10.1117/1.352862810.1117/1.3528628305558821280902 Search in Google Scholar

[8] Fei, X., Yang, J.B., Wei, J.T., Wu, R.M., Song, X.D., Wang, J.F., Yu, G.S. (2021). Investigation of the OH* chemiluminescence characteristics in CH4/O2 lifted flames. Journal of the Energy Institute, 99, 31-38. https://doi.org/10.1016/j.joei.2021.08.00710.1016/j.joei.2021.08.007 Search in Google Scholar

[9] Navakas, R., Saliamonas, A., Striugas, N., Džiugys, A., Paulauskas, R., Zakarauskas, K. (2018). Effect of producer gas addition and air excess ratio on natural gas flame luminescence. Fuel, 217, 478-489. https://doi.org/10.1016/j.fuel.2017.12.09410.1016/j.fuel.2017.12.094 Search in Google Scholar

[10] Huang, H.W., Zhang, Y. (2008). Flame colour characterization in the visible and infrared spectrum using a digital camera and image processing. Measurement Science and Technology, 19 (8), 085406. http://dx.doi.org/10.1088/0957-0233/19/8/08540610.1088/0957-0233/19/8/085406 Search in Google Scholar

[11] Yang, J.S., Ma, Z., Zhang, Y. (2019). Improved colour-modelled CH * and C 2 * measurement using a digital colour camera. Measurement, 141, 235-240. https://doi.org/10.1016/j.measurement.2019.04.01610.1016/j.measurement.2019.04.016 Search in Google Scholar

[12] Tripathi, M.M., Krishnan, S.R., Srinivasan, K.K., Yueh, F.Y., Singh, J.P. (2012). Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane–air flames. Fuel, 93, 684-691. https://doi.org/10.1016/j.fuel.2011.08.03810.1016/j.fuel.2011.08.038 Search in Google Scholar

[13] Brockhinke, A., Krüger, J., Heusing, M., Letzgus, M. (2012). Measurement and simulation of rotationally-resolved chemiluminescence spectra in flames. Applied Physics B, 107 (3), 539-549. https://doi.org/10.1007/s00340-012-5001-110.1007/s00340-012-5001-1 Search in Google Scholar

[14] Vogel, M., Bachfischer, M., Kaufmann, J., Sattelmayer, T. (2021). Experimental investigation of equivalence ratio fluctuations in a lean premixed kerosene combustor. Experiments in Fluids, 62, 93. https://doi.org/10.1007/s00348-021-03197-510.1007/s00348-021-03197-5 Search in Google Scholar

[15] Bedard, M.J., Fuller, T.L., Sardeshmukh, S., Anderson, W.E. (2020). Chemiluminescence as a diagnostic in studying combustion instability in a practical combustor. Combustion and Flame, 213, 211-225. https://doi.org/10.1016/j.combustflame.2019.11.03910.1016/j.combustflame.2019.11.039 Search in Google Scholar

[16] Baumgardner, M.E., Harvey, J. (2020). Analyzing OH*, CH*, and C2* chemiluminescence of bifurcating FREI propane-air flames in a micro flow reactor. Combustion and Flame, 221, 349-351. https://doi.org/10.1016/j.combustflame.2020.08.00910.1016/j.combustflame.2020.08.009 Search in Google Scholar

[17] Song, X., Guo, Q., Hu, C., Gong, Y. Yu, G. (2016). OH* chemiluminescence characteristics and structures of the impinging reaction region in opposed impinging diffusion flames. Energy Fuels, 30 (2), 1428-1436. https://doi.org/10.1021/acs.energyfuels.5b0272110.1021/acs.energyfuels.5b02721 Search in Google Scholar

[18] He, L., Guo, Q.H., Gong, Y. Wang, F.C. Yu, G.S. (2019). Investigation of OH* chemiluminescence and heat release in laminar methane–oxygen co-flow diffusion flames. Combustion and Flame, 201, 12-22. https://doi.org/10.1016/j.combustflame.2018.12.00910.1016/j.combustflame.2018.12.009 Search in Google Scholar

[19] Cho, Y.T., Na, S.J. (2005). Application of Abel inversion in real-time calculations for circularly and elliptically symmetric radiation sources. Measurement Science and Technology, 16, 878-884. https://doi.org/10.1088/0957-0233/16/3/03210.1088/0957-0233/16/3/032 Search in Google Scholar

[20] Huang, H.W., Zhang, Y. (2010). Digital colour image processing based measurement of premixed CH 4 +air and C 2 H 4 +air flame chemiluminescence. Fuel, 90 (1), 48-53. https://doi.org/10.1016/j.fuel.2010.07.05010.1016/j.fuel.2010.07.050 Search in Google Scholar

[21] Huang, H.W., Zhang, Y. (2010). Dynamic application of digital image and colour processing in characterizing flame radiation features. Measurement Science and Technology, 21 (8), 085202. http://dx.doi.org/10.1088/0957-0233/21/8/08520210.1088/0957-0233/21/8/085202 Search in Google Scholar

[22] Huang, H.W., Zhang, Y. (2011). Analysis of the ignition process using a digital image and colour processing technique. Measurement Science and Technology, 22 (7), 075401. http://dx.doi.org/10.1088/0957-0233/22/7/07540110.1088/0957-0233/22/7/075401 Search in Google Scholar

[23] Yang, J., Mossa, F.M.S., Huang, H.W., Wang, Q., Wolley, R., Zhang, Y. (2015). Oscillating flames in open tubes. Proceedings of the Combustion Institute, 35 (2), 2075. https://doi.org/10.1016/j.proci.2014.07.05210.1016/j.proci.2014.07.052 Search in Google Scholar

[24] Lubrano, L.M., Brackmann, C., Capriolo, G., Methling, T., Konnov, A.A. (2021). Measurements of the laminar burning velocities and NO concentrations in neat and blended ethanol and n-heptane flames. Fuel, 288, 119585. https://doi.org/10.1016/j.fuel.2020.11958510.1016/j.fuel.2020.119585 Search in Google Scholar

[25] Soid, S.N., Zainal, Z.A. (2011). Spray and combustion characterization for internal combustion engines using optical measuring techniques – a review. Energy, 36, 724-741. https://doi.org/10.1016/j.energy.2010.11.02210.1016/j.energy.2010.11.022 Search in Google Scholar

[26] Tripathi, M.M., Srinivasan, K.K., Krishnan, S.R., Yueh, F.Y., Singh, J.P. (2013). A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane-air flames. Fuel, 106, 318-316. https://doi.org/10.1016/j.fuel.2012.10.07910.1016/j.fuel.2012.10.079 Search in Google Scholar

[27] Meier, W., Keck, O. (2002). Laser Raman scattering in fuel-rich flames: background levels at different excitation wavelengths. Measurement Science and Technology, 13 (5), 741-749. http://dx.doi.org/10.1088/0957-0233/13/5/31210.1088/0957-0233/13/5/312 Search in Google Scholar

[28] He, Y.X., Zhou, W.Q., Ke, C., Xu, T., Zhao, Y. (2021). Review of laser-induced breakdown spectroscopy in gas detection. Spectroscopy and Spectral Analysis, 41 (09), 2681-2687. DOI: 10.3964/j.issn.1000-0593(2021) 09-2681-07. Search in Google Scholar

[29] Protopopov, V. (2014). Practical Opto-Electronics. Springer, ISBN 978-3319045122.10.1007/978-3-319-04513-9 Search in Google Scholar

[30] Michalakou, A., Stavropoulos, P., Couris, S. (2008). Laser-induced breakdown spectroscopy in reactive flows of hydrocarbon-air mixtures. Applied Physics Letters, 92 (8), 081501. https://doi.org/10.1063/1.283937810.1063/1.2839378 Search in Google Scholar

[31] Badawy, T., Hamza, M., Mansour, M.S., Adbel-Hafez, A.H.H., Imam, H., Adbel-Raheem, M.A., Wang, C.M., Lattimore, T. (2019). Lean partially premixed turbulent flame equivalence ratio measurements using laser-induced breakdown spectroscopy. Fuel, 237, 320-334. https://doi.org/10.1016/j.fuel.2018.10.01510.1016/j.fuel.2018.10.015 Search in Google Scholar

[32] Zhu, J.J., Wang, M.G., Wu, G., Yan, B., Tian, Y.F., Feng, R., Sun, M.B. (2021). Research progress of laser-induced fluorescence technology in combustion. Chinese Journal of Lasers, 48 (4), 78-110. Search in Google Scholar

[33] Miao, J., Leung, C.W., Cheung, C.S., Huang, Z.H., Jin, W. (2016). Effect of H2 addition on OH distribution of LPG/Air circumferential inverse diffusion flame. International Journal of Hydrogen Energy, 41 (22), 9653. https://doi.org/10.1016/j.ijhydene.2016.02.10510.1016/j.ijhydene.2016.02.105 Search in Google Scholar

[34] Johchi, A., Pareja, J., Böhm, B., Dreizler, A. (2019). Quantitative mixture fraction imaging of a synthetic biogas turbulent jet propagating into a NO-vitiated air co-flow using planar laser-induced fluorescence (PLIF). Experiments in Fluids, 60, 82. https://doi.org/10.1007/s00348-019-2723-410.1007/s00348-019-2723-4 Search in Google Scholar

[35] Marrero-Santiago, J., Verdier, A., Brunet, C., Vandel, A., Godard, G., Cabot, G., Boukhalfa, M., Renou, B. (2018). Experimental study of aeronautical ignition in a swirled confined jet-spray burner. Journal of Engineering for Gas Turbines and Power, 140 (2), 021502. https://doi.org/10.1115/1.403775210.1115/1.4037752 Search in Google Scholar

[36] Balusamy, S., Cessou, A., Lecordier, B. (2014). Laminar propagation of lean premixed flames ignited in stratified mixture. Combustion and Flame, 161 (2), 427-437. https://doi.org/10.1016/j.combustflame.2013.08.02310.1016/j.combustflame.2013.08.023 Search in Google Scholar

[37] Peterson, B., Reuss, D.L., Sick, V. (2014). On the ignition and flame development in a spray-guided direct-injection spark-ignition engine. Combustion and Flame, 161 (1), 240-255. https://doi.org/10.1016/j.combustflame.2013.08.01910.1016/j.combustflame.2013.08.019 Search in Google Scholar

[38] Versailles, P., Watson, G.M.G., Lipardi, A.C.A., Bergthorson, J.M. (2016). Quantitative CH measurements in atmospheric-pressure, premixed flames of C1–C4 alkanes. Combustion and Flame, 165, 109-124. https://doi.org/10.1016/j.combustflame.2015.11.00110.1016/j.combustflame.2015.11.001 Search in Google Scholar

[39] Wehr, L. Meier, W. Kutne, P. Hassa, C. (2007). Single-pulse 1D laser Raman scattering applied in a gas turbine model combustor at elevated pressure. Proceedings of the Combustion Institute, 31 (2), 3099-3106. https://doi.org/10.1016/j.proci.2006.07.14810.1016/j.proci.2006.07.148 Search in Google Scholar

[40] Meier, W., Dem, C., Arndt, C.M. (2016). Mixing and reaction progress in a confined swirl flame undergoing thermo-acoustic oscillations studied with laser Raman scattering. Experimental Thermal and Fluid Science, 73, 71-78. https://doi.org/10.1016/j.expthermflusci.2015.09.01110.1016/j.expthermflusci.2015.09.011 Search in Google Scholar

[41] Vilsen, S.B., Stroe, D.-I. (2021). Battery state-of-health modelling by multiple linear regression. Journal of Cleaner Production, 290, 125700. https://doi.org/10.1016/j.jclepro.2020.12570010.1016/j.jclepro.2020.125700 Search in Google Scholar

[42] Ge, H., Li, X.L., Li, Y.J., Lu, G., Yan, Y. (2021). Biomass fuel identification using flame spectroscopy and tree model algorithms. Combustion Science and Technology, 193 (6), 1055-1072. https://doi.org/10.1080/00102202.2019.168065410.1080/00102202.2019.1680654 Search in Google Scholar

[43] Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 1, 81-106. https://doi.org/10.1007/BF0011625110.1007/BF00116251 Search in Google Scholar

[44] Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:101093340432410.1023/A:1010933404324 Search in Google Scholar

[45] Zhou, Z.Y., Ge, Y.F., Liu, Y.Z. (2021). Real-time monitoring of carbon concentration using laser-induced breakdown spectroscopy and machine learning. Optics Express, 29 (24), 39811-39823. https://doi.org/10.1364/OE.44373210.1364/OE.44373234809337 Search in Google Scholar

[46] Hangelbroek, T., Ron, A. (2010). Nonlinear approximation using Gaussian kernels. Journal of Functional Analysis, 259 (1), 203-219. https://doi.org/10.1016/j.jfa.2010.02.00110.1016/j.jfa.2010.02.001 Search in Google Scholar

[47] Shih, F.C., Mitchell, O.R. (1992). A mathematical morphology approach to Euclidean distance transformation. IEEE Transactions on Image Processing, 1 (2), 197-204. http://dx.doi.org/10.1109/83.13659610.1109/83.13659618296154 Search in Google Scholar

[48] Lee, J.W., McGann, B., Hammack, S.D., Carter, C., Lee, T.H., Do, H., Bak, M.S. (2021). Machine learning based quantification of fuel-air equivalence ratio and pressure from laser-induced plasma spectroscopy. Optics Express, 29 (12), 17902-17914. https://doi.org/10.1364/OE.42509610.1364/OE.42509634154062 Search in Google Scholar

[49] Wang, Y., Yu, Y.F., Zhu, X.L., Zhang, Z.X. (2020). Pattern recognition for measuring the flame stability of gas-fired combustion based on the image processing technology. Fuel, 270, 117486. https://doi.org/10.1016/j.fuel.2020.11748610.1016/j.fuel.2020.117486 Search in Google Scholar

eISSN:
1335-8871
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing