Acceso abierto

Uncertainty of Thermographic Temperature Measurement with an Additional close-up Lens


Cite

[1] Ferreira, R.A.M., Silva, B.P.A, Teixeira, G.G.D., Andrade, R.M., Porto, M.P. (2019). Uncertainty analysis applied to electrical components diagnosis by infrared thermography. Measurement, 132, 263-271.10.1016/j.measurement.2018.09.036 Search in Google Scholar

[2] Grégis, F. (2019). On the meaning of measurement uncertainty. Measurement, 133 (5), 41-46.10.1016/j.measurement.2018.09.073 Search in Google Scholar

[3] Varba, I., Palencar, R., Hadzistevic, M., Strbac, B., Spasic-Jokic, V., Hodolic, J. (2011). Compact vibration measuring system for in-vehicle applications. Measurement Science Review, 11 (5), 154-159. Search in Google Scholar

[4] Palenčár, R., Sopkuliak, P., Palenčár, J., Ďuriš, S., Suroviak, E., Halaj, M. (2017). Application of Monte Carlo method for evaluation of uncertainties of ITS-90 by standard platinum resistance thermometer. Measurement Science Review, 3 (17), 108-116.10.1515/msr-2017-0014 Search in Google Scholar

[5] Usamentiaga, R., Fernandez, M.A., Villan, A.F., Carus, J.L. (2018). Temperature monitoring for electrical substations using infrared thermography: Architecture for industrial internet of things. IEEE Transactions on Industrial Informatics, 14 (12), 5667-5677.10.1109/TII.2018.2868452 Search in Google Scholar

[6] Orlov, S.P., Girin, R.V., Uyutova, O.Y. (2018). Artificial neural network for technical diagnostics of control systems by thermography. In International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). IEEE, 1-4.10.1109/ICIEAM.2018.8728586 Search in Google Scholar

[7] Kopec, M., Wiecek, B. (2018). Low-cost IR system for thermal characterization of electronic devices. Measurement Automation Monitoring, 64 (4), 103-107. Search in Google Scholar

[8] Dziarski, K., Hulewicz, A., Dombek, G. (2021). Lack of thermogram sharpness as component of thermographic temperature measurement uncertainty budget. Sensors, 21 (12), 4013-4023.10.3390/s21124013823045734200789 Search in Google Scholar

[9] Zaccara, Z., Edelman, J.B., Cardone, G. (2020). A general procedure for infrared thermography heat transfer measurements in hypersonic wind tunnels. International Journal of Heat and Mass Transfer, 163, 120419-120435.10.1016/j.ijheatmasstransfer.2020.120419 Search in Google Scholar

[10] Altenburg, J.S., Straße, A., Gumenyuk, A., Meierhofer, C. (2020). In-situ monitoring of a laser metal deposition (LMD) process: Comparison of MWIR, SWIR and high-speed NIR thermography. Quantitative InfraRed Thermography Journal, doi: 10.1080/17686733.2020.1829889.10.1080/17686733.2020.1829889 Search in Google Scholar

[11] Yoon, S.T., Park, J.C., Cho, Y.J. (2021). An experimental study on the evaluation of temperature uniformity on the surface of a blackbody using infrared cameras. Quantitative InfraRed Thermography Journal, doi: 10.1080/17686733.2021. 1877918. Search in Google Scholar

[12] Muniz, P.R., Kalid, R.A., Cani, S.P., Magalhaes, R.S. (2014). Handy method to estimate uncertainty of temperature measurement by infrared thermography. Optical Engineering, 53, 7.10.1117/1.OE.53.7.074101 Search in Google Scholar

[13] Schuss, C., Remes, K., Leppänen, K., Saarela, J., Fabritius, T., Eichberger, B., Rahkonen, T. (2020). Detecting defects in photovoltaic cells and panels with the help of time-resolved thermography under outdoor environmental conditions. In 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 1-6.10.1109/I2MTC43012.2020.9128489 Search in Google Scholar

[14] Chakraborty, B., Billol, K.S. (2020). Process-integrated steel ladle monitoring, based on infrared imaging - a robust approach to avoid ladle breakout. Quantitative InfraRed Thermography Journal, 17 (3), 169-191.10.1080/17686733.2019.1639112 Search in Google Scholar

[15] Tomoyuki, T. (2020). Coaxiality evaluation of coaxial imaging system with concentric silicon-glass hybrid lens for thermal and color imaging. Sensors, 20 (20), 5753-5772. Search in Google Scholar

[16] Wollack, J.E., Cataldo, G., Miller, K.H., Quijada, A.M. (2020). Infrared properties of high-purity silicon. Optical Letters, 45 (17), 4935-4938.10.1364/OL.39384732870894 Search in Google Scholar

[17] Singh, J., Arora, A.S. (2021). Effectiveness of active dynamic and passive thermography in the detection of maxillary sinusitis. Quantitative InfraRed Thermography Journal, 18 (4), 213-225.10.1080/17686733.2020.1736456 Search in Google Scholar

[18] Minkina, W., Dudzik, S. (2009). Infrared Thermography: Errors and Uncertainties. Wiley, 1-29. ISBN 978-0-470-68224-1. Search in Google Scholar

[19] Dziarski, K., Hulewicz, A. (2021). Components of the uncertainty of thermography temperature measurements with the use of a macro lens. In 13th International Conference on Measurement. IEEE, 155-158.10.23919/Measurement52780.2021.9446816 Search in Google Scholar

[20] Dziarski, K., Hulewicz, A., Dombek, G., Frąckowiak, R., Wiczynski, G. (2020). Unsharpness of thermograms in thermography diagnostics of electronic elements. Electronics, 9 (6), 897-1002.10.3390/electronics9060897 Search in Google Scholar

[21] FLIR Systems. FLIR E-Series. www.globaltestsupply.com/pdfs/cache/www.globaltestsupply.com/flir_systems/thermal_imager/e50/datasheet/flir_systems_e50_thermal_imager_datasheet.pdf. Search in Google Scholar

[22] FLIR Systems. Close-up 2x lens. www.flircameras.com/t197214-close-up-2x-lens.htm. Search in Google Scholar

[23] Linear Motion Rail. (www.ebay.com) Search in Google Scholar

[24] Krawiec, P., Rózanski, L., Czarnecka-Komorowska, D., Wargula, L. (2020). Evaluation of the thermal stability and surface characteristics of thermoplastic polyurethane V-belt. Materials, 13 (7), 1502-1520.10.3390/ma13071502717803232218292 Search in Google Scholar

[25] Siemens. PLC Controller. https://docs.rs-online.com/4ed5/0900766b81397276.pdf. Search in Google Scholar

[26] Tran, Q.H., Han, D., Kang, C., Haldar, A., Huh, J. (2017). Effects of ambient temperature and relative humidity on subsurface defect detection in concrete structures by active thermal imaging. Sensors, 17, 1718.10.3390/s17081718557955928933762 Search in Google Scholar

[27] Minkina, W., Klecha, D. (2015). Modeling of atmospheric transmission coefficient. In Proceedings of the Sensor 2015 and IRS2 2015 AMA Conferences, Nürnberg, Germany, 19-21. Search in Google Scholar

[28] European co-operation for Accreditation. http://www.european-accreditation.org. Search in Google Scholar

[29] Papadakos, G., Marinakis, V., Konstas, C., Doukas, H., Papadopoulos, A. (2021). Managing the uncertainty of the U-value measurement using an auxiliary set along with a thermal camera. Energy Build, 242, 110984.10.1016/j.enbuild.2021.110984 Search in Google Scholar

[30] Kuwalek, P., Otomanski, P., Wandachowicz, K. (2020). Influence of the phenomenon of spectrum leakage on the evaluation process of metrological properties of power quality analyser. Energies, 13 (20), 5338-5355.10.3390/en13205338 Search in Google Scholar

eISSN:
1335-8871
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing