Acceso abierto

High-resolution Three-dimensional Surface Imaging Microscope Based on Digital Fringe Projection Technique


Cite

[1] Yip, F., Venart, J. (1971). An elastic analysis of deformation of rough spheres, rough cylinders and rough annuli in contact. Journal of Physics D: Applied Physics, 4, 1470-1486.10.1088/0022-3727/4/10/304Search in Google Scholar

[2] Kato, S., Yamaguchi, K., Kato, T. (1981). A method to measure contact pressure between metallic surfaces by changes in surface roughness. Journal of Engineering for Industry, 103, 210-217.10.1115/1.3184478Search in Google Scholar

[3] Jang, Y. (2000). Transient thermoelastic contact problems for an elastic foundation. International Journal of Solids and Structures, 37, 1997-2004.10.1016/S0020-7683(99)00008-6Search in Google Scholar

[4] Chen, F., Brown, G., Song, M. (2000). Overview of three-dimensional shape measurement using optical methods. Optical Engineering, 39, 10-22.10.1117/1.602438Search in Google Scholar

[5] Reich, C., Ritter, R., Thesing, J. (2000). 3-D shape measurement of complex objects by combining photogrammetry and fringe projection. Optical Engineering, 39, 224-231.10.1117/1.602356Search in Google Scholar

[6] Sitnik, R., Kujawinska, M., Woznicki, J. (2002). Digital fringe projection system for large-volume 360-deg shape measurement. Optical Engineering, 41, 443-449.10.1117/1.1430422Search in Google Scholar

[7] Zhang, S., Huang, P. (2006). High-resolution, real-time three-dimensional shape measurement. Optical Engineering, 45, 123601.10.1117/1.2402128Search in Google Scholar

[8] Du, H., Wang, Z. (2007). Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system. Optics Letters, 32, 2438-2440.10.1364/OL.32.00243817700811Search in Google Scholar

[9] Park, S., Chang, M. (2009). Reverse engineering with a structured light system. Computers & Industrial Engineering, 57, 1377-1384.10.1016/j.cie.2009.07.005Search in Google Scholar

[10] Hong, D., Lee, H., Kim, M., Cho, H., Moon, J. (2009). Sensor fusion of phase measuring profilometry and stereo vision for three-dimensional inspection of electronic components assembled on printed circuit boards. Applied Optics, 48, 4158-4169.10.1364/AO.48.00415819623230Search in Google Scholar

[11] Wang, Z., Du, H., Park, S., Xie, H. (2009). Three-dimensional shape measurement with a fast and accurate approach. Applied Optics, 48, 1052-1061.10.1364/AO.48.00105223567564Search in Google Scholar

[12] Liu, K., Wang, Y., Lau, D., Hao, Q., Hassebrook, L. (2010). Dual-frequency pattern scheme for high-speed 3-D shape measurement. Optics Express, 18, 5229-5244.10.1364/OE.18.00522920389536Search in Google Scholar

[13] Su, X., Zhang, Q. (2010). Dynamic 3-D shape measurement method: a review. Optics and Lasers in Engineering, 48, 191-204.10.1016/j.optlaseng.2009.03.012Search in Google Scholar

[14] Geng, J. (2011). Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics, 3, 128-160.10.1364/AOP.3.000128Search in Google Scholar

[15] Zuo, C., Chen, Q., Gu, G., Feng, S., Feng, F. (2012). High-speed three-dimensional profilometry for multiple objects with complex shapes. Optics Express, 20, 19493-19510.10.1364/OE.20.01949323038592Search in Google Scholar

[16] Ma, S., Quan, C., Zhu, R., Chen, L., Li, B., Tay, C. (2012). A fast and accurate gamma correction based on Fourier spectrum analysis for digital fringe projection profilometry. Optics Communications, 285, 533-538.10.1016/j.optcom.2011.11.041Search in Google Scholar

[17] Brakhage, P., Notni, G., Kowarschik, R. (2004). Image aberrations in optical three-dimensional measurement systems with fringe projection. Applied Optics, 43, 3217-3223.10.1364/AO.43.00321715181799Search in Google Scholar

[18] Marklund, O., Huntley, J., Cusack, R. (2007). Robust unwrapping algorithm for three-dimensional phase volumes of arbitrary shape containing knotted phase singularity loops. Optical Engineering, 46, 085601.10.1117/1.2771652Search in Google Scholar

[19] Zhang, S., Yau, S. (2007). Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector. Applied Optics, 46, 36-43.10.1364/AO.46.00003617167551Search in Google Scholar

[20] Li, Z., Shi, Y., Wang, C., Wang, Y. (2008). Accurate calibration method for a structured light system. Optical Engineering, 47, 053604.10.1117/1.2931517Search in Google Scholar

[21] Pan, B., Kemao, Q., Huang, L., Asundi, A. (2009). Phase error analysis and compensation for nonsinuoidal waveforms in phase-shifting digital fringe projection profilometry. Optics Letters, 34, 416-418.10.1364/OL.34.000416Search in Google Scholar

[22] Fu, Y. Luo, Q. (2011). Fringe projection profilometry based on a novel phase shift method. Optics Express, 19, 21739-21747.10.1364/OE.19.02173922109024Search in Google Scholar

[23] Zuo, C., Chen, Q., Gu, G., Feng, S., Feng, F., Li, R., Shen, G. (2013). High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection. Optics and Lasers in Engineering, 51, 953-960.10.1016/j.optlaseng.2013.02.012Search in Google Scholar

[24] Yin, Y., Wang, M., Gao, B., Liu, X., Peng, X. (2015). Fringe projection 3D microscopy with the general imaging model. Optics Express, 23, 6846-6857.10.1364/OE.23.00684625836904Search in Google Scholar

[25] Li, B., Zhang, S. (2015). Flexible calibration method for microscopic structured light system using telecentric lens. Optics Express, 23, 25795-25803.10.1364/OE.23.02579526480093Search in Google Scholar

[26] Babaie, G., Abolbashari, M., Farahi, F. (2015). Dynamics range enhancement in digital fringe projection technique. Precision Engineering, 39, 243-251.10.1016/j.precisioneng.2014.06.007Search in Google Scholar

[27] Liu, C., Yen, T. (2016). Digital multi-step phase-shifting profilometry for three-dimensional ballscrew surface imaging. Optics & Laser Technology, 79, 115-123.10.1016/j.optlastec.2015.12.001Search in Google Scholar

[28] Hu, Y., Chen, Q., Tao, T., Li, H., Zuo, C. (2017). Absolute three-dimensional micro surface profile measurement based on a Greenough-type stereomicroscope. Measurement Science and Technology, 28, 045004.10.1088/1361-6501/aa5a2dSearch in Google Scholar

[29] Wang, M., Yin, Y., Deng, D., Meng, X., Liu, X., Peng, X. (2017). Improved performance of multi-view fringe projection 3D microscopy. Optics Express, 25, 19408-19421.10.1364/OE.25.01940829041135Search in Google Scholar

[30] Pistellato, M., Bergamasco, F., Albarelli, A., Cosmo, L., Gasparetto, A., Torsello, A. (2019). Robust phase unwrapping by probabilistic consensus. Optics and Lasers in Engineering, 121, 428-440.10.1016/j.optlaseng.2019.05.006Search in Google Scholar

[31] Wu, G., Wu, Y., Li, L., Liu, F. (2019). High-resolution few-pattern method for 3D optical measurement. Optics Letters, 44, 3602-3605.10.1364/OL.44.00360231305582Search in Google Scholar

[32] Gai, S., Da, F., Tang, M. (2019). A flexible multi-view calibration and 3D measurement method based on digital fringe projection. Measurement Science and Technology, 30, 025203.10.1088/1361-6501/aaf5bdSearch in Google Scholar

[33] Xu, Y., Zhao, H., Jiang, H., Li, X. (2019). High-accuracy 3D shape measurement of translucent objects by fringe projection profilometry. Optics Express, 27, 18421-18434.10.1364/OE.27.01842131252786Search in Google Scholar

[34] Hu, Y., Chen, Q., Feng, S., Tao, T., Asundi, A., Zuo, C. (2019). A new microscopic telecentric stereo vision system - Calibration, rectification, and three-dimensional reconstruction. Optics and Lasers in Engineering, 113, 14-22.10.1016/j.optlaseng.2018.09.011Search in Google Scholar

[35] Herráez, M., Burton, D., Lalor, M., Gdeisat, M. (2002). Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Applied Optics, 41, 7437-7444.10.1364/AO.41.00743712502301Search in Google Scholar

[36] Wang, Z., Du, H., Bi, H. (2006). Out-of-plane shape determination in generalized fringe projection profilometry. Optics Express, 14, 12122-12133.10.1364/OE.14.01212219529639Search in Google Scholar

[37] Zuo, C., Chen, Q., Feng, S., Feng, F., Gu, G., Sui, X. (2012). Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing. Applied Optics, 51, 4477-4490.10.1364/AO.51.00447722772122Search in Google Scholar

[38] Goldstein, G., Creath, K. (2015). Quantitative phase microscopy: automated background leveling techniques and smart temporal phase unwrapping. Applied Optics, 54, 5175-5185.10.1364/AO.54.00517526192681Search in Google Scholar

[39] Yang, T., Kim, H., Lee, K., Kim, B., Choi, Y. (2016). Single-shot and phase-shifting digital holographic microscopy using a 2-D grating. Optics Express, 24, 9480-9488.10.1364/OE.24.00948027137562Search in Google Scholar

[40] Padilla, M., Servin, M., Garnica, G. (2017). Profilometry with digital fringe-projection at the spatial and temporal Nyquist frequencies. Optics Express, 25, 22292-22302.10.1364/OE.25.02229229041542Search in Google Scholar

[41] Guo, W., Wu, Z., Xu, R., Zhang, Q., Fujigaki, M. (2019). A fast reconstruction method for three-dimensional shape measurement using dual-frequency grating projection and phase-to-height lookup table. Optics & Laser Technology, 112, 269-277.10.1016/j.optlastec.2018.11.009Search in Google Scholar

[42] Kulkarni, R., Banoth, E., Pal, P. (2019). Automated surface feature detection using fringe projection: an autoregressive modeling-based approach. Optics and Lasers in Engineering, 121, 506-511.10.1016/j.optlaseng.2019.05.014Search in Google Scholar

eISSN:
1335-8871
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing