Acceso abierto

Gaussian Recursive Filter for Nonlinear Systems with Finite-step Correlated Noises and Packet Dropout Compensations


Cite

[1] Zhao, Y.B., Kang, Y., Liu, G.P., Rees, D. (2011). Stochastic stabilization of packet-based networked control systems. International Journal of Innovative Computing, Information and Control, 7 (5), 2441-2455.Search in Google Scholar

[2] Chen, G., Xia, J., Zhuang, G., Zhao, J. (2018). Improved delay-dependent stabilization for a class of networked control systems with nonlinear perturbations and two delay components. Applied Mathematics and Computation, 316, 1-17.10.1016/j.amc.2017.07.072Search in Google Scholar

[3] Zhang, H., Shi, Y., Wang, J., Chen, H. (2018). A new delay-compensation scheme for networked control systems in controller area networks. IEEE Transactions on Industrial Electronics, 65 (9), 7239-7247.10.1109/TIE.2018.2795574Search in Google Scholar

[4] Bar-Shalom, Y., Li, X.R., Kirubarajan, T. (2004). Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. John Wiley & Sons.Search in Google Scholar

[5] Nørgaard, M., Poulsen, N.K., Ravn, O. (2000). New developments in state estimation for nonlinear systems. Automatica, 36 (11), 1627-1638.10.1016/S0005-1098(00)00089-3Search in Google Scholar

[6] Ito, K. (2000). Gaussian filter for nonlinear filtering problems. In 39th IEEE Conference on Decision and Control. IEEE, 2, 1218-1223.Search in Google Scholar

[7] Arasaratnam, I., Haykin, S. (2009). Cubature Kalman filters. IEEE Transactions on Automatic Control, 54 (6), 1254-1269.10.1109/TAC.2009.2019800Search in Google Scholar

[8] Doucet, A., Godsill, S., Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10, 197-208.10.1023/A:1008935410038Search in Google Scholar

[9] Chui, C.K., Chen, G. (1989). Kalman filtering with real time applications. Applied Optics, 28, 1841.Search in Google Scholar

[10] Wang, X., Liang, Y., Pan, Q., Yang, F. (2012). A Gaussian approximation recursive filter for nonlinear systems with correlated noises. Automatica, 48 (9), 2290-2297.10.1016/j.automatica.2012.06.035Search in Google Scholar

[11] Chang, G. (2014). Alternative formulation of the Kalman filter for correlated process and observation noise. IET Science, Measurement & Technology, 8 (5), 310-318.10.1049/iet-smt.2013.0145Search in Google Scholar

[12] Huang, Y., Zhang, Y., Wang, X., Thao, L. (2015). Gaussian filter for nonlinear systems with correlated noises at the same epoch. Automatica, 60, 122-126.10.1016/j.automatica.2015.06.035Search in Google Scholar

[13] Yu, H., Zhang, X.J., Wang, S., Song, S.M. (2016). Alternative framework of the Gaussian filter for nonlinear systems with synchronously correlated noises. IET Science, Measurement & Technology, 10 (4), 306-315.10.1049/iet-smt.2015.0167Search in Google Scholar

[14] Tian, T., Sun, S., Li, N. (2016). Multi-sensor information fusion estimators for stochastic uncertain systems with correlated noises. Information Fusion, 27, 126-137.10.1016/j.inffus.2015.06.001Search in Google Scholar

[15] Zhao, K., Li, P., Song, S.M. (2018). Gaussian filter for nonlinear stochastic uncertain systems with correlated noises. IEEE Sensors Journal, 18 (23), 9584-9594.10.1109/JSEN.2018.2865620Search in Google Scholar

[16] Sun, S.L., Tian, T., Lin, H.L. (2016). Optimal linear estimators for systems with finite-step correlated noises and packet dropout compensations. IEEE Transactions on Signal Processing, 64 (21), 5672-5681.10.1109/TSP.2016.2576420Search in Google Scholar

[17] Tian, T., Sun, S.L., Lin, H.L. (2019). Distributed fusion filter for multi-sensor systems with finite-step correlated noises. Information Fusion, 46, 128-140.10.1016/j.inffus.2018.05.002Search in Google Scholar

[18] Sun, S.L., Wang, G.H. (2014). Modeling and estimation for networked systems with multiple random transmission delays and packet losses, Systems & Control Letters, 73 (12), 6-16.10.1016/j.sysconle.2014.07.005Search in Google Scholar

[19] Sun, S.L. (2013). Optimal linear filters for discrete-time systems with randomly delayed and lost measurements with/without time stamps. IEEE Transaction on Automatic Control, 58 (6), 1551-1556.10.1109/TAC.2012.2229812Search in Google Scholar

[20] Sun, S.L., Xie, L., Xiao, W., Soh, Y.C. (2008). Optimal linear estimation for systems with multiple packet dropouts. Automatica, 44 (5), 1333-1342.10.1016/j.automatica.2007.09.023Search in Google Scholar

[21] Zhang, W.A., Yu, L., Feng, G. (2011). Optimal linear estimation for networked systems with communication constraints. Automatica, 47 (9), 1992-2000.10.1016/j.automatica.2011.05.020Search in Google Scholar

[22] Ma, J., Sun, S.L. (2019). A general packet dropout compensation framework for optimal prior filter of networked multi-sensor systems. Information Fusion, 45, 128-137.10.1016/j.inffus.2018.01.004Search in Google Scholar

[23] Silva, E.I., Solis, M.A. (2013). An alternative look at the constant-gain Kalman filter for state estimation over erasure channels. IEEE Transaction on Automatic Control, 58 (12), 3259-3265.10.1109/TAC.2013.2263647Search in Google Scholar

[24] Ma, J., Sun, S.L. (2017). Linear estimators for networked systems with one-step random delay and multiple packet dropouts based on prediction compensation. IET Signal Processing, 11 (2), 197-204.10.1049/iet-spr.2016.0260Search in Google Scholar

[25] Ding, J., Sun, S.L., Ma, J., Li, N. (2019). Fusion estimation for multi-sensor networked systems with packet loss compensation. Information Fusion, 45, 138-149.10.1016/j.inffus.2018.01.008Search in Google Scholar

[26] Anderson, B.D.O., Moore, J.B. (2012). Optimal Filtering. Courier Corporation.Search in Google Scholar

eISSN:
1335-8871
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing