Acceso abierto

Investigation of Phase Pattern Modulation for Digital Fringe Projection Profilometry


Cite

[1] Berryman, F., Pynsent, P., Fairbank, J., Disney, S. (2008). A new system for measuring three-dimensional back shape in scoliosis. European Spine Journal, 17, 663-673.10.1007/s00586-007-0581-x236741518247064Search in Google Scholar

[2] Garnier, C., Pastor, M., Eyma, F., Lorrain, B. (2011). The detection of aeronautical defects in situ on composite structures using non destructive testing. Composite Structures, 93, 1328-1336.10.1016/j.compstruct.2010.10.017Search in Google Scholar

[3] Kulkarni, R., Rastogi, P. (2016). Optical measurement techniques – a push for digitization. Optics and Lasers in Engineering, 87, 1-17.10.1016/j.optlaseng.2016.05.002Search in Google Scholar

[4] Servin, M., Quiroga, J., Padilla, J. (2014). Fringe Pattern Analysis for Optical Metrology: Theory, Algorithms, and Applications. Weinheim: Wiley-VCH.10.1002/9783527681075Search in Google Scholar

[5] Salas, L., Luna, E., Salinas, J., Garcia, V., Servin, M. (2003). Profilometry by fringe projection. Optical Engineering, 42, 3307-3314.10.1117/1.1607968Search in Google Scholar

[6] Chen, L., Quan, C., Tay, C., Fu, Y. (2005). Shape measurement using one frame projected sawtooth fringe pattern. Optics Communications, 246, 275-284.10.1016/j.optcom.2004.10.079Search in Google Scholar

[7] Wang, Z., Du, H., Bi, H. (2006). Out-of-plane shape determination in generalized fringe projection profilometry. Optics Express, 14, 12122-12133.10.1364/OE.14.01212219529639Search in Google Scholar

[8] Zhang, S., Yau, S. (2007). Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector. Applied Optics, 46, 36-43.10.1364/AO.46.00003617167551Search in Google Scholar

[9] Du, H., Wang, Z. (2007). Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system. Optics Letters, 32, 2438-2440.10.1364/OL.32.00243817700811Search in Google Scholar

[10] Pan, B., Kemao, Q., Huang, L., Asundi, A. (2009). Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry. Optics Letters, 34, 416-418.10.1364/OL.34.000416Search in Google Scholar

[11] Zhang, S., Van der Weide, D., Oliver, J. (2010). Superfast phase-shifting method for 3-D shape measurement. Optics Express, 18, 9684-9689.10.1364/OE.18.00968420588818Search in Google Scholar

[12] Ayubi, G., Martino, J., Alonso, J., Fernández, A., Flores, J., Ferrari, J. (2012). Color encoding of binary fringes for gamma correction in 3-D profiling. Optics Letters, 37, 1325-1327.10.1364/OL.37.00132522513674Search in Google Scholar

[13] Zuo, C., Chen, Q., Gu, G., Feng, S., Feng, F., Li, R., Shen, G. (2013). High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection. Optics and Lasers in Engineering, 51, 953-960.10.1016/j.optlaseng.2013.02.012Search in Google Scholar

[14] Feng, S., Chen, Q., Zuo, C., Sun, J., Yu, S. (2014). High-speed real-time 3-D coordinates measurement based on fringe projection profilometry considering camera lens distortion. Optics Communications, 329, 44-56.10.1016/j.optcom.2014.04.067Search in Google Scholar

[15] Li, X., Zhang, Z., Yang, C. (2016). Reconstruction method for fringe projection profilometry based on light beams. Applied Optics, 55, 9895-9906.10.1364/AO.55.00989527958485Search in Google Scholar

[16] Liu, C., Yen, T. (2016). Digital multi-step phase-shifting profilometry for three-dimensional ballscrew surface imaging. Optics & Laser Technology, 79, 115-123.10.1016/j.optlastec.2015.12.001Search in Google Scholar

[17] Feng, S., Chen, Q., Zuo, C., Tao, T., Hu, Y., Asundi, A. (2017). Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns. Optics Express, 25, 540-559.10.1364/OE.25.00054028157945Search in Google Scholar

[18] Zhao, H., Xu, Y., Jiang, H., Li, X. (2018). 3D shape measurement in the presence of strong interreflections by epipolar imaging and regional fringe projection. Optics Express, 26, 7177-7131.10.1364/OE.26.00711729609398Search in Google Scholar

[19] Flores, J., Ayubi, G., Martino, J., Castillo, O., Ferrari, J. (2018). 3D-shape of objects with straight line-motion by simultaneous projection of color coded patterns. Optics Communications, 414, 185-190.10.1016/j.optcom.2017.12.087Search in Google Scholar

[20] Huang, T., Li, X., Fu, X., Zhang, C., Duan, F., Jiang, J. (2019). Arbitrary phase shifting method for fiber-optic fringe projection profilometry based on temporal sinusoidal phase modulation. Optics and Lasers in Engineering, 121, 300-306.10.1016/j.optlaseng.2019.04.022Search in Google Scholar

[21] Zhang, C., Zhao, H., Qiao, J., Zhou, C., Zhang, L., Hu, G., Geng, H. (2019). Three-dimensional measurement based on optimized circular fringe projection technique. Optics Express, 27, 2465-2477.10.1364/OE.27.00246530732284Search in Google Scholar

[22] Gai, S., Da, F., Tang, M. (2019). A flexible multi-view calibration and 3D measurement method based on digital fringe projection. Measurement Science and Technology, 30, 025203.10.1088/1361-6501/aaf5bdSearch in Google Scholar

[23] Kemao, Q. (2004). Windowed Fourier transform for fringe pattern analysis. Applied Optics, 43, 2695-2702.10.1364/AO.43.002695Search in Google Scholar

[24] Wang, H., Kemao, Q. (2009). Frequency guided methods for demodulation of a single fringe pattern. Optics Express, 17, 15118-15127.10.1364/OE.17.015118Search in Google Scholar

[25] Kai, L., Kemao, Q. (2010). Fast frequency-guided sequential demodulation of a single fringe pattern. Optics Letters, 35, 3718-3720.10.1364/OL.35.00371821081974Search in Google Scholar

[26] Liu, K., Wang, Y., Lau, D., Hao, Q., Hassebrook, L. (2010). Dual-frequency pattern scheme for high-speed 3-D shape measurement. Optics Express, 18, 5229-5244.10.1364/OE.18.00522920389536Search in Google Scholar

[27] Ma, S., Quan, C., Zhu, R., Chen, L., Li, B., Tay, C. (2012). A fast and accurate gamma correction based on Fourier spectrum analysis for digital fringe projection profilometry. Optics Communications, 285, 533-538.10.1016/j.optcom.2011.11.041Search in Google Scholar

[28] Padilla, M., Servin, M., Garnica, G. (2017). Profilometry with digital fringe-projection at the spatial and temporal Nyquist frequencies. Optics Express, 25, 22292-22302.10.1364/OE.25.02229229041542Search in Google Scholar

[29] Qiao, N., Quan, C. (2018). Dual-frequency fringe projection for 3D shape measurement based on correction of gamma nonlinearity. Optics & Laser Technology, 106, 378-384.10.1016/j.optlastec.2018.04.031Search in Google Scholar

[30] Zhang, H., Zhao, H., Zhao, Z., Zhuang, Y., Fan, C. (2019). Two-frame fringe pattern phase demodulation using Gram-Schmidt orthonormalization with least squares method. Optics Express, 27, 10495-10508.10.1364/OE.27.01049531052908Search in Google Scholar

[31] Singh, V., Tayal, S., Mehta, D. (2019). Single shot fringe projection profilometry using tunable frequency Fresnel biprism interferometer for large range of measurement. Optics Communications, 451, 104-110.10.1016/j.optcom.2019.06.019Search in Google Scholar

[32] Jia, P., Kofman, J., English, C. (2007). Multiple-step triangular-pattern phase shifting and the influence of number of steps and pitch on measurement accuracy. Applied Optics, 46, 3253-3262.10.1364/AO.46.003253Search in Google Scholar

[33] Yang, Z., Wu, K., Xi, J., Yu, Y. (2014). Intensity ratio approach for 3D profile measurement based on projection of triangular patterns. Applied Optics, 53, 200-207.10.1364/AO.53.00020024514050Search in Google Scholar

[34] Herráez, M., Burton, D., Lalor, M., Gdeisat, M. (2002). Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Applied Optics, 41, 7437-7444.10.1364/AO.41.00743712502301Search in Google Scholar

[35] Zuo, C., Chen, Q., Feng, S., Feng, F., Gu, G., Sui, X. (2012). Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing. Applied Optics, 51, 4477-4490.10.1364/AO.51.00447722772122Search in Google Scholar

[36] Xu, Y., Ekstrand, L., Dai, J., Zhang, S. (2011). Phase error compensation for three-dimensional shape measurement with projector defocusing. Applied Optics, 50, 2572-2581.10.1364/AO.50.00257221673758Search in Google Scholar

eISSN:
1335-8871
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing