This work is licensed under the Creative Commons Attribution 4.0 International License.
Jain A., Bhatti R., Singh H. Total productive maintenance (TPM) implementation practice: A literature review and directions. International Journal of Lean Six Sigma 2014; 5 (3): pp. 293-323, http://doi.org//10.1108/IJLSS-06-2013-0032.Search in Google Scholar
Jain A., Bhatti R., Singh H. OEE enhancement in SMEs through mobile maintenance: a TPM concept. International Journal of Quality & Reliability Management 2015; 32 (5): pp. 503-516, http://doi.org/10.1108/IJQRM-05-2013-0088.Search in Google Scholar
Michlowicz E. Assessment of the modernized production system through selected TPM method indicators. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24 (4): pp. 677-686, http://doi.org/10.17531/ein.2022.4.8.Search in Google Scholar
Nyhuis P., Wiendhal H-P. Fundamentals of Production Logistics. Theory, Tools and Applications. Springer – Verlag, Berlin Heidelberg 2009.Search in Google Scholar
Pascal D. Lean Production Simplified: A Plain-Language Guide to the World’s Most Powerful Production System. CRC Press Taylor & Francis Group, Boca Raton 2015.Search in Google Scholar
Jardzioch A., Kalinowski K., Kłos S. Organizacja i planowanie produkcji. PWE, Warszawa 2023.Search in Google Scholar
Nowakowski T. Niezawodność systemów logistycznych. Oficyna Wydawnicza Pol. Wrocławskiej, Wrocław 2011.Search in Google Scholar
Pamuła W. Niezawodność i bezpieczeństwo. Wybór zagadnień. Wydawnictwo Pol. Śląskiej, Gliwice 2011.Search in Google Scholar
Kaźmierczak J. Eksploatacja systemów technicznych. Wyd. Pol. Śląskiej, Gliwice 2000.Search in Google Scholar
Friederich J., Lazarova-Molnar S. Reliability assessment of manufacturing systems: A comprehensive overview, challenges and opportunities. Journal of Manufacturing Systems 2024; 72: pp. 38-58, https://doi.org/10.1016/j.jmsy.2023.11.001Search in Google Scholar
Schäfer L, Günther M, Martin A, Lüpfert M, Mandel C, Rapp S, et al. Systematics for an integrative modelling of product and production system. Procedia CIRP 2023; 118(04): 104-9, http://dx.doi.org/10.1016/j.procir.2023.06.019.Search in Google Scholar
Vogl GW, Weiss BA, Helu M. A review of diagnostic and prognostic capabilities and best practices for manufacturing. J Intell Manuf 2019; 30(1): pp. 79-95, http://dx.doi.org/10.1007/s10845-016-1228-8.Search in Google Scholar
Rusin A., Baryshew Ya. Improving Equipment Reliability and System Maintenance and Repair Efficiency. Civil Engineering Journal 2019; 5(8), DOI:10.28991/cej-2019-03091372.Search in Google Scholar
Syan C, Ramsoobag G. Maintenance applications of multi-criteria optimization: A review. Reliability Engineering & System Safety 2019; 190: 106520, https://doi.org/10.1016/j.ress.2019.106520.Search in Google Scholar
Chlebus M, Werbińska-Wojciechowska S. Issues on production process reliability assessment – Review. Res Logist Prod 2016; 6(6): pp. 481-97. http://dx.doi.org/10.21008/j.2083-4950.2016.6.6.1.Search in Google Scholar
Chlebus M, Werbińska-Wojciechowska S. Assessment methods of production processes reliability – state of the art. J KONBiN 2017; 41(1): pp. 247-76. http://dx.doi.org/10.1515/jok-2017-0013.Search in Google Scholar
Jia S, Yan C, Kang J, Xie H, Wei Y. Optimal allocation of reliability improvement target based on multiple correlation failures and risk uncertainty. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2023; 25(1):8, http://doi.org/10.17531/ein.2023.1.8.Search in Google Scholar
Barker T. J. The Impact of Reliability in Conceptual Design – An Integrated Trade-off Analysis. Graduate Theses and Dissertations Retrieved. Univ. of Arkansas 2022, https://scholarworks.uark.edu/etd/4449.Search in Google Scholar
Arena D., Kiritsis, D. A Methodological Framework for Ontology-Driven Instantiation of Petri Net Manufacturing Process Models. In: Ríos, J., Bernard, A., Bouras, A., Foufou, S. (eds) Product Lifecycle Management and the Industry of the Future. PLM 2017. IFIP Advances in Information and Communication Technology, vol 517. Springer, Cham, https://doi.org/10.1007/978-3-319-72905-3_49.Search in Google Scholar
Nabi HZ, Aized T. Performance evaluation of a carousel configured multiple products flexible manufacturing system using Petri net. Oper Manage Res 2020; 13(1-2): pp. 109-29. http://dx.doi.org/10.1007/s12063-020-00151-2.Search in Google Scholar
Yan R, Jackson LM, Dunnett SJ. Automated guided vehicle mission reliability modelling using a combined fault tree and Petri net approach. Int J Adv Manuf Technol 2017; 92(5): pp. 1825-37, http://dx.doi.org/10.1007/s00170-017-0175-7.Search in Google Scholar
Schäfer L, Kochendörfer P, May M.C, Lanza G. Planning and multi-objective optimization of production systems by means of assembly line balancing. Procedia CIRP 2023; 120(3): pp. 1125-30, http://dx.doi.org/10.1016/j.procir.2023.09.136.Search in Google Scholar
Schäfer L., Tse S., May M.C., Lanza G. Assisted production system planning by means of complex robotic assembly line balancing. Journal of Manufacturing Systems 2025; 78: pp. 109-123, https://doi.org/10.1016/j.jmsy.2024.11.008.Search in Google Scholar
Valet A, Altenmüller T, Waschneck B, May MC, Kuhnle A, Lanza G. Opportunistic maintenance scheduling with deep reinforcement learning. J Manuf Syst 2022; 64: pp. 518-34, http://dx.doi.org/10.1016/j.jmsy.2022.07.016.Search in Google Scholar
Kim D, Kim K O. Optimal allocation of reliability improvement target under dependent component failures. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2022; 236(5): pp. 866-878, DOI:10.1177/1748006X211035635.Search in Google Scholar
Alsina E.F., Chica M., Trawiński K. et al. On the use of machine learning methods to predict component reliability from data-driven industrial case studies. Int J Adv Manuf Technol 2018; 94: pp. 2419-2433, https://doi.org/10.1007/s00170-017-1039-x.Search in Google Scholar
Antosz K, Jasiulewicz-Kaczmarek M, Paśko Ł, Zhang C, Wang S. Application of machine learning and rough set theory in lean maintenance decision support system development. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23 (4): pp. 695-708, http://doi.org/10.17531/ein.2021.4.12.Search in Google Scholar
Gola A. Reliability analysis of reconfigurable manufacturing system structures using computer simulation methods. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2019; 21 (1): pp. 90-102, http://dx.doi.org/10.17531/ein.2019.1.11.Search in Google Scholar
Michlowicz E., Wojciechowski J. A method for evaluating and upgrading systems with parallel structures with forced redundancy. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23 (4): pp. 770-776, http://doi.org/10.17531/ein.2021.4.19.Search in Google Scholar
Idziaszek Z. Method of analysis of productivity with an innovative model of the working capability of the object in the body (C) for the new resource allocation on inherent and non-inherent. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20 (4): pp. 671-681,http://dx.doi.org/10.17531/ein.2018.4.18.Search in Google Scholar
Coit D. W, Zio E. The evolution of system reliability optimization. Reliability Engineering & System Safety 2019; 192: 106259, https://doi.org/10.1016/j.ress.2018.09.008.Search in Google Scholar
Jia S, Yan C, Kang J, Xie H, Wei Y. Optimal allocation of reliability improvement target based on multiple correlation failures and risk uncertainty. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2023; 25(1):8, http://doi.org/10.17531/ein.2023.1.8.Search in Google Scholar
Yu H, Zhang G, Ran Y, et al. A comprehensive and practical reliability allocation method considering failure effects and reliability costs. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20 (2): pp. 244-251, http://dx.doi.org/10.17531/ein.2018.2.09.Search in Google Scholar
Rogalewicz M, Kujawińska A, Feledziak A. Ensuring the reliability and reduction of quality control costs by minimizing process variability. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2023: 25(2), DOI: https://doi.org/10.17531/ein/162626.Search in Google Scholar
Kim D, Kim K O. Optimal allocation of reliability improvement target under dependent component failures. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2022; 236(5): 866-878, DOI:10.1177/1748006X211035635.Search in Google Scholar
Amjath M., Kerbache L., Smith J.M., Elomri A. Optimisation of buffer allocations in manufacturing systems:A study on intra and outbound logistics systems using finite queueing networks. Appl. Sci. 2023; 13: 9525, https://doi.org/10.3390/app13179525.Search in Google Scholar
Kłos, S.; Trebuna, P. The Impact of the Availability of Resources, the Allocation of Buffers and Number of Workers on the Effectiveness of an Assembly Manufacturing System. Manag. Prod. Eng. Rev. 2017; 8: pp. 40-49, DOI:10.1515/mper-2017-0027.Search in Google Scholar
Kłos S. Analiza dyskretnych procesów produkcyjnych oparta na metodzie symulacji komputerowej. Badanie wpływu alokacji buforów i zasobów produkcyjnych na efektywność systemów wytwórczych. Unwersytet Zielonogórski, Zielona Góra 2023. https://doi.org/10.59444/2023MONaKlo.Search in Google Scholar
Huang M.G., Chang P.L., Chou Y.Ch.. Buffer allocation in flow-shop-type production systems with general arrival and service patterns. Computers & Operations Research 29 (2002) pp. 103-121. DOI:10.1016/S0305-0548(00)00060-5Search in Google Scholar
Cao Y, Liu S, Fang Z, et al. Reliability improvement allocation method considering common cause failures. IEEE Transactions on Reliability 2019; 69(2): pp. 571-580Search in Google Scholar
Cao Y, Liu S, Fang Z, et al. Reliability allocation for series‐parallel systems subject to potential propagated failures. Quality and Reliability Engineering International 2020; 36(2): pp. 565-576, https://doi.org/10.1002/qre.2591Search in Google Scholar