Acceso abierto

Investigation of Electrochemical Discharge Machining for Tungsten Carbide: Effects of Electrolyte Composition on Material Removal Rate and Surface Quality

,  y   
09 nov 2024

Cite
Descargar portada

A.V. Kulkami, “Electrochemical discharge machining process,” Def. Sci. J., vol. 57, no. 5, pp. 765-770, 2007, doi: 10.14429/dsj.64.1812. Search in Google Scholar

M. CoteaţǍ, N. Pop, H.P. Schulze, L. SlǍtineanu, and O. Dodun, “Investigation on Hybrid Electrochemical Discharge Drilling Process Using Passivating Electrolyte,” Procedia CIRP, vol. 42, no. Isem Xviii, pp. 778-782, 2016, doi: 10.1016/j.procir.2016.02.318. Search in Google Scholar

S. Elhami and M.R. Razfar, “Numerical and experimental study of discharge mechanism in the electrochemical discharge machining process,” J. Manuf. Process., vol. 50, no. September 2019, pp. 192-203, 2020, doi: 10.1016/j.jmapro.2019.12.040. Search in Google Scholar

A. Charak and C.S. Jawalkar, “Experimental Investigation and Analysis on Borosilicate Glass Using Electrochemical Discharge Machining Process,” Silicon, vol. 14, no. 4, pp. 1823-1829, 2022, doi: 10.1007/s12633-021-00980-1. Search in Google Scholar

P. Janmanee and S. Kumjing, “A study of tungsten carbide surfaces during the electrical discharge machining using artificial neural network model,” Int. J. Appl. Eng. Res., vol. 12, no. 12, pp. 3214-3227, 2017. Search in Google Scholar

A.P. Study, “Synthesis and Sintering of Tungsten and Titanium Carbide: A Parametric Study,” 2022. Search in Google Scholar

L.J. Prakash, “Application of fine grained tungsten carbide based cemented carbides,” Int. J. Refract. Met. Hard Mater., vol. 13, no. 5, pp. 257-264, 1995, doi: 10.1016/0263-4368(95)92672-7. Search in Google Scholar

H.T. Kim, J.S. Kim, and Y.S. Kwon, “Mechanical Properties of Binderless Tungsten Carbide by Spark Plasma Sintering,” no. January, 2005, doi: 10.1109/KORUS.2005.1507757. Search in Google Scholar

K. Gupta, “Intelligent Optimization of Wire-EDM parameters for Surface Roughness and Material Removal Rate while Machining WC-Co Composite,” FME Trans., vol. 49, no. 3, pp. 756-763, 2021, doi: 10.5937/fme2103756G. Search in Google Scholar

N. Shibuya, Y. Ito, and W. Natsu, “Electrochemical machining of tungsten carbide alloy micro-pin with NaNO3 solution,” Int. J. Precis. Eng. Manuf., vol. 13, no. 11, pp. 2075-2078, 2012, doi: 10.1007/s12541-012-0273-2. Search in Google Scholar

Z. Liu, H. Nouraei, J.K. Spelt, and M. Papini, “Electrochemical slurry jet micro-machining of tungsten carbide with a sodium chloride solution,” Precis. Eng., vol. 40, pp. 189-198, 2015, doi: 10.1016/j.precisioneng.2014.11.009. Search in Google Scholar

R.A. Mahdavinejad and A. Mahdavinejad, “ED machining of WC-Co,” J. Mater. Process. Technol., vol. 162-163, no. SPEC. ISS., pp. 637-643, 2005, doi: 10.1016/j.jmatprotec.2005.02.211. Search in Google Scholar

G. Kumar, J.S. Tiwana, and A. Singla, “Optimization of the machining parameters for EDM wire cutting of Tungsten Carbide,” MATEC Web Conf., vol. 57, pp. 0-4, 2016, doi: 10.1051/matecconf/20165703006. Search in Google Scholar

D. Kanagarajan, K. Palanikumar, and R. Karthikeyan, “Effect of Electrical Discharge Machining on strength and reliability of WC-30%Co composite,” Mater. Des., vol. 39, pp. 469-474, 2012, doi: 10.1016/j.matdes.2012.03.016. Search in Google Scholar

S.K. Chak, “Electro Chemical Discharge Machining: Process Capabilities,” Int. J. Mech. Prod. Eng., vol. 4, no. 8, pp. 135-146, 2016. Search in Google Scholar

K.R. Kolhekar and M. Sundaram, “A Study on the Effect of Electrolyte Concentration on Surface Integrity in Micro Electrochemical Discharge Machining,” Procedia CIRP, vol. 45, pp. 355-358, 2016, doi: 10.1016/j.procir.2016.02.146. Search in Google Scholar

W.Y. Peng and Y.S. Liao, “Study of electrochemical discharge machining technology for slicing non-conductive brittle materials,” J. Mater. Process. Technol., vol. 149, no. 1-3, pp. 363-369, 2004, doi: 10.1016/j.jmatprotec.2003.11.054. Search in Google Scholar

S. N, S.S. Hiremath, and S. J, “Prediction of Material Removal Rate using Regression Analysis and Artificial Neural Network of ECDM Process,” Int. J. Recent Adv. Mech. Eng., vol. 3, no. 2, pp. 69-81, 2014, doi: 10.14810/ijmech.2014.3207. Search in Google Scholar

P. Pravin, K. Amaresh, and B. Raj, “Parametric Analysis of Electrochemical Discharge Drilling on Soda-Lime Glass Material Using Taguchi L27 Orthogonal Array Method,” Stroj. Cas., vol. 69, no. 4, pp. 115-132, 2019, doi: 10.2478/scjme-2019-0047. Search in Google Scholar

C. Wei, K. Xu, J. Ni, A. J. Brzezinski, and D. Hu, “A finite element based model for electrochemical discharge machining in discharge regime,” Int. J. Adv. Manuf. Technol., vol. 54, no. 9-12, pp. 987-995, 2011, doi: 10.1007/s00170-010-3000-0. Search in Google Scholar

L. Paul and D. Antony, “Effect of tool diameter in ECDM process with powder mixed electrolyte,” IOP Conf. Ser. Mater. Sci. Eng., vol. 396, no. 1, 2018, doi: 10.1088/1757-899X/396/1/012070. Search in Google Scholar

A. Charak and C.S. Jawalkar, “A Theoretical analysis on Electro Chemical Discharge Machining using Taguchi Method,” J. Phys. Conf. Ser., vol. 1240, no. 1, 2019, doi: 10.1088/1742-6596/1240/1/012083. Search in Google Scholar

T.F. Didar, A. Dolatabadi, and R. Wüthrich, “Characterization and modeling of 2D-glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity,” J. Micromechanics Microengineering, vol. 18, no. 6, 2008, doi: 10.1088/0960-1317/18/6/065016. Search in Google Scholar

Z.P. Zheng, W.H. Cheng, F.Y. Huang, and B.H. Yan, “3D microstructuring of Pyrex glass using the electrochemical discharge machining process,” J. Micromechanics Microengineering, vol. 17, no. 5, pp. 960-966, 2007, doi: 10.1088/0960-1317/17/5/016. Search in Google Scholar

M.M. Silicon, “Development and Experimental Study of Milling Electrochemical Spark Development and Experimental Study of Milling Electrochemical Spark Micromachining (M - ECSMM) of Silicon,” Silicon, no. August, 2022, doi: 10.1007/s12633-022-02023-9. Search in Google Scholar

Y. Zhang, Z. Xu, J. Xing, and D. Zhu, “Effect of tube-electrode inner diameter on electrochemical discharge machining of nickel-based superalloy,” Chinese J. Aeronaut., vol. 29, no. 4, pp. 1103-1110, 2016, doi: 10.1016/j.cja.2015.12.016. Search in Google Scholar

C. Zhang, Z. Xu, X. Zhang, and J. Zhang, “Surface integrity of holes machined by electrochemical discharge drilling method,” CIRP J. Manuf. Sci. Technol., vol. 31, no. 2019, pp. 643-651, 2020, doi: 10.1016/j.cirpj.2020.09.004. Search in Google Scholar

S.A. Hammood, H. Al-Ethari, and A. Rahimi, “Effect of addition Ag and Cu nanoparticles on electrochemical discharge machining of NiTi shape memory alloys,” J. Mech. Eng. Res. Dev., vol. 44, no. 4, pp. 233-242, 2021. Search in Google Scholar

P. Kumaravel, P. Suresh, K.V. Raja, and T. Sekar, “Improvement of Micro-Electrochemical Discharge Machining of Austenitic Stainless Steel 316L using NaOH electrolyte containing N2,” Int. J. Electrochem. Sci., vol. 17, no. 7, p. 220747, 2022, doi: 10.20964/2022.07.53. Search in Google Scholar

D. Titus, E. James Jebaseelan Samuel, and S. M. Roopan, Nanoparticle characterization techniques. Elsevier Inc., 2018. doi: 10.1016/B978-0-08-102579-6.00012-5. Search in Google Scholar

J.P. Davim, Machining of hard materials, no. January 2011. 2011. doi: 10.1007/978-1-84996-450-0. Search in Google Scholar

A. Ivanov, R. Leese, and A. Spieser, Micro-electrochemical Machining, Second Edi. Yi Qin, 2015. doi: 10.1016/B978-0-323-31149-6.00006-2. Search in Google Scholar

G. Singh, P.S. Rao, and R. Singh, “Electrochemical Machining Process Using Different Electrolytes for Improved Process Efficiency,” E3S Web Conf., vol. 391, p. 01168, 2023, doi: 10.1051/e3sconf/202339101168. Search in Google Scholar

S. Editor and J. Ramsden, Micromachining using electrochemical discharge phenomenon. Search in Google Scholar

P. Kumar and P. Rawat, “Investigating the Effects of Wire Electric Discharge Machining Parameters on MRR and Surface Integrity in Machining of Tungsten Carbide Cobalt ( WC-24 % Co ) Composite Material,” vol. 2, no. 7, pp. 29-35, 2015. Search in Google Scholar

S.H. Lee and X. Li, “Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide,” J. Mater. Process. Technol., vol. 139, no. 1-3 SPEC, pp. 315-321, 2003, doi: 10.1016/S0924-0136(03)00547-8. Search in Google Scholar

B. Ekmekci, “Residual stresses and white layer in electric discharge machining (EDM),” Appl. Surf. Sci., vol. 253, no. 23, pp. 9234-9240, 2007, doi: 10.1016/j.apsusc.2007.05.078. Search in Google Scholar

M.B. Toparli, “Wire-EDM Cutting Strategies of WC-Co Hardmetals : Effect of Number of EDM Pass on Surface Integrity Wire-EDM Cutting Strategies of WC-Co Hardmetals ,” pp. 0-18, 2022. Search in Google Scholar

W. Zhang, H. Chang, and Y. Liu, “Study on Solidification Process and Residual Stress of SiCp/Al Composites in EDM,” Micromachines, vol. 13, no. 6, 2022, doi: 10.3390/mi13060972. Search in Google Scholar