Enhanced areal capacitance through potassium incorporation into the graphene framework of laser-induced graphene for flexible electronics using LiCl gel electrolyte
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Yan, Z., Luo, S., Li, Q., Wu, Z., Recent advances in flexible wearable supercapacitors: properties, Fabrication, Appl., 2024, 11: 2302172. 10.1002/advs.202302172YanZ.LuoS.LiQ.WuZ.Recent advances in flexible wearable supercapacitors: propertiesFabrication, Appl202411230217210.1002/advs.202302172Open DOI
Chen, Z., He, G., You, T., Zhang, T., Liu, B., Wang, Y., Journal of Environmental Chemical Engineering Complex pollution of Fluoroquinolone antibiotics and metal oxides/metal ions in water: a review on occurrence, formation mechanisms, removal and ecotoxicity, J. Environ. Chem. Eng., 2024, 12: 112191. 10.1016/j.jece.2024.112191ChenZ.HeG.YouT.ZhangT.LiuB.WangY.Journal of Environmental Chemical Engineering Complex pollution of Fluoroquinolone antibiotics and metal oxides/metal ions in water: a review on occurrence, formation mechanisms, removal and ecotoxicityJ. Environ. Chem. Eng.20241211219110.1016/j.jece.2024.112191Open DOI
Khan, H.A., Tawalbeh, M., Aljawrneh, B., Abuwatfa, W., Al-Othman, A., Sadeghifar, H., et al., A comprehensive review on supercapacitors: Their promise to flexibility, high temperature, materials, design, and challenges, Energy, 2024, 295: 131043. 10.1016/j.energy.2024.131043KhanH.A.TawalbehM.AljawrnehB.AbuwatfaW.Al-OthmanA.SadeghifarH.A comprehensive review on supercapacitors: Their promise to flexibility, high temperature, materials, design, and challengesEnergy202429513104310.1016/j.energy.2024.131043Open DOI
Yuan, Y., Han, C., Guo, L., Wu, X., Zhao, Y., Exploring the mechanisms of magnetic fields in supercapacitors: material classification, material nanostructures, and electrochemical properties, J. Mater. Chem. A, 2024, 12: 6165–6189. 10.1039/D3TA07658JYuanY.HanC.GuoL.WuX.ZhaoY.Exploring the mechanisms of magnetic fields in supercapacitors: material classification, material nanostructures, and electrochemical propertiesJ. Mater. Chem. A2024126165618910.1039/D3TA07658JOpen DOI
Abraham, D.S., Bhagiyalakshmi, M., Vinoba, M., Chapter 3 - Supercapacitors: basics and progress, In: Kulkarni N.V., B. I. B. T. H. of E.M. for S.E. Kharissov, (Eds.). Elsevier, 2024, pp. 61–82. 10.1016/B978-0-323-96125-7.00021-6AbrahamD.S.BhagiyalakshmiM.VinobaM.Chapter 3 - Supercapacitors: basics and progressIn:KulkarniN.V.B. I. B. T. H. of E.M. for S.E. Kharissov(Eds.).Elsevier2024pp. 618210.1016/B978-0-323-96125-7.00021-6Open DOI
Chen, Z., Zhao, S., Zhao, H., Zou, Y., Yu, C., Zhong, W., Nitrogen-doped interpenetrating porous carbon/graphene networks for supercapacitor applications, Chem. Eng. J., 2021, 409: 127891. 10.1016/j.cej.2020.127891ChenZ.ZhaoS.ZhaoH.ZouY.YuC.ZhongW.Nitrogen-doped interpenetrating porous carbon/graphene networks for supercapacitor applicationsChem. Eng. J.202140912789110.1016/j.cej.2020.127891Open DOI
Khandelwal, M., Van Tran, C., Lee, J., In, J.B., Nitrogen and boron co-doped densified laser-induced graphene for supercapacitor applications, Chem. Eng. J., 2022, 428: 131119. 10.1016/j.cej.2021.131119KhandelwalM.Van TranC.LeeJ.InJ.B.Nitrogen and boron co-doped densified laser-induced graphene for supercapacitor applicationsChem. Eng. J.202242813111910.1016/j.cej.2021.131119Open DOI
Shaalan, N.M., Ahmed, F., Kumar, S., Ahmad, M.M., Al-Naim, A.F., Hamad, D., Electrochemical performance of potassium bromate active electrolyte for laser-induced KBr-graphene supercapacitor electrodes, Inorganics, 2023, 11: 109. 10.3390/inorganics11030109ShaalanN.M.AhmedF.KumarS.AhmadM.M.Al-NaimA.F.HamadD.Electrochemical performance of potassium bromate active electrolyte for laser-induced KBr-graphene supercapacitor electrodesInorganics20231110910.3390/inorganics11030109Open DOI
Karaman, C., Bayram, E., Karaman, O., Aktaş, Z., Preparation of high surface area nitrogen doped graphene for the assessment of morphologic properties and nitrogen content impacts on supercapacitors, J. Electroanal. Chem., 2020, 868: 114197. 10.1016/j.jelechem.2020.114197KaramanC.BayramE.KaramanO.AktaşZ.Preparation of high surface area nitrogen doped graphene for the assessment of morphologic properties and nitrogen content impacts on supercapacitorsJ. Electroanal. Chem.202086811419710.1016/j.jelechem.2020.114197Open DOI
Allen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: a review of graphene, Chem. Rev., 2010, 110: 132–145. 10.1021/cr900070dAllenM.J.TungV.C.KanerR.B.Honeycomb carbon: a review of grapheneChem. Rev.201011013214510.1021/cr900070dOpen DOI
Ghuge, A.D., Shirode, A.R., Kadam, V.J., Graphene: A comprehensive review, Curr. Drug. Targets, 2017, 18: 724–733. 10.2174/1389450117666160709023425GhugeA.D.ShirodeA.R.KadamV.J.Graphene: A comprehensive reviewCurr. Drug. Targets20171872473310.2174/1389450117666160709023425Open DOI
Lin, J., Peng, Z., Liu, Y., Ruiz-Zepeda, F., Ye, R., Samuel, E.L.G., et al., Laser-induced porous graphene films from commercial polymers, Nat. Commun., 2014, 5: 5–12. 10.1038/ncomms6714LinJ.PengZ.LiuY.Ruiz-ZepedaF.YeR.SamuelE.L.G.Laser-induced porous graphene films from commercial polymersNat. Commun.2014551210.1038/ncomms6714Open DOI
Ngidi, N.P.D., Ollengo, M.A., Nyamori, V.O., Effect of doping temperatures and nitrogen precursors on the physicochemical, optical, and electrical conductivity properties of nitrogen-doped reduced graphene oxide, Materials (Basel), 2019, 12: 3376. 10.3390/ma12203376NgidiN.P.D.OllengoM.A.NyamoriV.O.Effect of doping temperatures and nitrogen precursors on the physicochemical, optical, and electrical conductivity properties of nitrogen-doped reduced graphene oxideMaterials (Basel)201912337610.3390/ma12203376Open DOI
Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., Saito, R., Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano Lett., 2010; 10: 751–758. 10.1021/nl904286rDresselhausM.S.JorioA.HofmannM.DresselhausG.SaitoR.Perspectives on carbon nanotubes and graphene Raman spectroscopyNano Lett20101075175810.1021/nl904286rOpen DOI
Popov, V.N., Two-phonon Raman scattering in graphene, AIP Conf. Proc., Vol. 2075, 2019, p. 110001. 10.1063/1.5091252PopovV.N.Two-phonon Raman scattering in grapheneAIP Conf. ProcVol. 20752019p. 11000110.1063/1.5091252Open DOI
Popov, V.N., Two-phonon Raman bands of bilayer graphene: Revisited, Carbon N. Y., 2015, 91: 436–444. 10.1016/j.carbon.2015.05.020PopovV.N.Two-phonon Raman bands of bilayer graphene: RevisitedCarbon N. Y.20159143644410.1016/j.carbon.2015.05.020Open DOI
Shaalan, N.M., Ahmed, F., Kumar, S., Melaibari, A., Hasan, P.M.Z., Aljaafari, A., Monitoring food spoilage based on a defect-induced multiwall carbon nanotube sensor at room temperature: preventing food waste, ACS Omega, 2020, 5: 30531–30537. 10.1021/acsomega.0c04396ShaalanN.M.AhmedF.KumarS.MelaibariA.HasanP.M.Z.AljaafariA.Monitoring food spoilage based on a defect-induced multiwall carbon nanotube sensor at room temperature: preventing food wasteACS Omega20205305313053710.1021/acsomega.0c04396Open DOI
Lucchese, M.M., Stavale, F., Ferreira, E.H.M., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A., Jorio, A., Quantifying ion-induced defects and Raman relaxation length in graphene, Carbon N. Y., 2010, 48: 1592–1597. 10.1016/j.carbon.2009.12.057LuccheseM.M.StavaleF.FerreiraE.H.M.VilaniC.MoutinhoM.V.O.CapazR.B.AcheteC.A.JorioA.Quantifying ion-induced defects and Raman relaxation length in grapheneCarbon N. Y.2010481592159710.1016/j.carbon.2009.12.057Open DOI
Il Langford, J., Wilson, A.J.C., Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 1978, 11: 102–113.Il LangfordJ.WilsonA.J.C.Scherrer after sixty years: a survey and some new results in the determination of crystallite sizeJ. Appl. Crystallogr.197811102113Search in Google Scholar
Patterson, A.L., The Scherrer formula for X-ray particle size determination, Phys. Rev., 1939, 56: 978–982. 10.1103/PhysRev.56.978PattersonA.L.The Scherrer formula for X-ray particle size determinationPhys. Rev.19395697898210.1103/PhysRev.56.978Open DOI
Iqbal, M.W., Razzaq, S., Noor, N.A., Aftab, S., Afzal, A., Ullah, H., et al., Enhancing the electronic properties of the graphene-based field-effect transistor via chemical doping of KBr, J. Mater. Sci. Mater. Electron., 2022, 33: 12416–12425. 10.1007/s10854-022-08199-5IqbalM.W.RazzaqS.NoorN.A.AftabS.AfzalA.UllahH.Enhancing the electronic properties of the graphene-based field-effect transistor via chemical doping of KBrJ. Mater. Sci. Mater. Electron.202233124161242510.1007/s10854-022-08199-5Open DOI
Shaalan, N.M., Ahmed, F., Rashad, M., Kumar, S., Saber, O., Al-Naim, A.F., et al., Ceramic Ti/TiO2/AuNP Film with 1-D nanostructures for selfstanding supercapacitor electrodes, Crystals, 2022, 12: 791. 10.3390/cryst12060791ShaalanN.M.AhmedF.RashadM.KumarS.SaberO.Al-NaimA.F.Ceramic Ti/TiO2/AuNP Film with 1-D nanostructures for selfstanding supercapacitor electrodesCrystals20221279110.3390/cryst12060791Open DOI
Lee, S., Kim, K., Yoon, J., Binder- and conductive additive-free laser-induced supercapacitors, NPG Asia Mater., 2020, 12: 1–15. 10.1038/s41427-020-0204-0LeeS.KimK.YoonJ.Binder- and conductive additive-free laser-induced supercapacitorsNPG Asia Mater.20201211510.1038/s41427-020-0204-0Open DOI
Clerici, F., Fontana, M., Bianco, S., Serrapede, M., Perrucci, F., Ferrero, S., et al., In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes, ACS Appl. Mater. Interfaces, 2016, 8: 2–8. 10.1021/acsami.6b00808ClericiF.FontanaM.BiancoS.SerrapedeM.PerrucciF.FerreroS.In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodesACS Appl. Mater. Interfaces201682810.1021/acsami.6b00808Open DOI
Seol, M., Nam, I., Ribeiro, E.L., Segel, B., Lee, D., Palma, T., et al., All-printed in-plane supercapacitors by sequential additive manufacturing process, ACS Appl. Energy Mater., 2020, 3: 4965–4973. 10.1021/acsaem.0c00510SeolM.NamI.RibeiroE.L.SegelB.LeeD.PalmaT.All-printed in-plane supercapacitors by sequential additive manufacturing processACS Appl. Energy Mater.202034965497310.1021/acsaem.0c00510Open DOI
Enoki, T., Endo, M., Suzuki, M., Graphite intercalation compounds and applications, Oxford Academic, New York, 2003. 10.1093/oso/9780195128277.001.0001EnokiT.EndoM.SuzukiM.Graphite intercalation compounds and applicationsOxford AcademicNew York200310.1093/oso/9780195128277.001.0001Open DOI
Xue, M., Chen, G., Yang, H., Zhu, Y., Wang, D., He, J., et al., Superconductivity in potassium-doped few-layer graphene, J. Am. Chem. Soc., 2012, 134: 6536–6539. 10.1021/ja3003217XueM.ChenG.YangH.ZhuY.WangD.HeJ.Superconductivity in potassium-doped few-layer grapheneJ. Am. Chem. Soc.20121346536653910.1021/ja3003217Open DOI
Zhai, Y.T., Chen, S., Yang, J.H., Xiang, H.J., Gong, X.G., Walsh, A., et al., Structural diversity and electronic properties of Cu2SnX3 (X = S, Se): A first-principles investigation, Phys. Rev. B, 2011, 84: 75213.ZhaiY.T.ChenS.YangJ.H.XiangH.J.GongX.G.WalshA.Structural diversity and electronic properties of Cu2SnX3 (X = S, Se): A first-principles investigationPhys. Rev. B20118475213Search in Google Scholar
Khan, M.F., Iqbal, M.Z., Iqbal, M.W., Iermolenko, V.M., Waseem Khalil, H.M., Nam, J., et al., Stable and reversible doping of graphene by using KNO3 solution and photo-desorption current response. RSC Adv., 2015, 5: 50040–50046. 10.1039/C5RA08136JKhanM.F.IqbalM.Z.IqbalM.W.IermolenkoV.M.Waseem KhalilH.M.NamJ.Stable and reversible doping of graphene by using KNO3 solution and photo-desorption current responseRSC Adv.20155500405004610.1039/C5RA08136JOpen DOI
Bin, J., Hsia, B., Yoo, J., Hyun, S., Carraro, C., Maboudian, R., et al., Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide, Carbon N. Y., 2014, 83: 144–151. 10.1016/j.carbon.2014.11.017BinJ.HsiaB.YooJ.HyunS.CarraroC.MaboudianR.Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimideCarbon N. Y.20148314415110.1016/j.carbon.2014.11.017Open DOI
Liu, C., Liang, H., Wu, D., Lu, X., Wang, Q., Graphene-based supercapacitors: direct semiconductor laser writing of few-layer graphene polyhedra networks for flexible solid-state supercapacitor (Adv. Electron. Mater. 7/2018), Adv. Electron. Mater., 2018, 4: 1870034. 10.1002/aelm.201870034LiuC.LiangH.WuD.LuX.WangQ.Graphene-based supercapacitors: direct semiconductor laser writing of few-layer graphene polyhedra networks for flexible solid-state supercapacitor (Adv. Electron. Mater. 7/2018)Adv. Electron. Mater.20184187003410.1002/aelm.201870034Open DOI
Zhou, C., Hong, M., Yang, Y., Yang, C., Hu, N., Zhang, L., et al., Laser-induced bi-metal sulfide/graphene nanoribbon hybrid frameworks for high-performance all-in-one fiber supercapacitors, J. Power Sources, 2019, 438: 227044. 10.1016/j.jpowsour.2019.227044ZhouC.HongM.YangY.YangC.HuN.ZhangL.Laser-induced bi-metal sulfide/graphene nanoribbon hybrid frameworks for high-performance all-in-one fiber supercapacitorsJ. Power Sources201943822704410.1016/j.jpowsour.2019.227044Open DOI
Khandelwal, M., Nguyen, A.P., Van Tran, C., In, J.B., Simple fabrication of Co3O4 nanoparticles on N-doped laser-induced graphene for high-performance supercapacitors, RSC Adv., 2021, 11: 38547–38554. 10.1039/D1RA08048BKhandelwalM.NguyenA.P.Van TranC.InJ.B.Simple fabrication of Co3O4 nanoparticles on N-doped laser-induced graphene for high-performance supercapacitorsRSC Adv.202111385473855410.1039/D1RA08048BOpen DOI
Tiliakos, A., Tre, A.M.I., Tanas, E., Balan, A., Stamatin, I., Space-filling supercapacitor carpets: highly scalable fractal architecture for energy storage, J. Power Sources, 2018, 384: 145–155. 10.1016/j.jpowsour.2018.02.061TiliakosATreA.M.I.TanasE.BalanA.StamatinI.Space-filling supercapacitor carpets: highly scalable fractal architecture for energy storageJ. Power Sources201838414515510.1016/j.jpowsour.2018.02.061Open DOI
Liu, Z., Hinaut, A., Peeters, S., Scherb, S., Meyer, E., Righi, M.C., et al., 2D KBr/graphene heterostructures – influence on work function and friction, Nanomaterials, 2022, 12: 1–10. 10.3390/nano12060968LiuZ.HinautA.PeetersS.ScherbS.MeyerE.RighiM.C.2D KBr/graphene heterostructures – influence on work function and frictionNanomaterials20221211010.3390/nano12060968Open DOI