This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abadel, A.A., Alghamdi, H., Alharbi, Y.R., Alamri, M., Khawaji, M., Abdulaziz, M.A.M., et al., Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mud, Materials, 2023, 16: 1551. 10.3390/MA16041551AbadelA.A.AlghamdiH.AlharbiY.R.AlamriM.KhawajiM.AbdulazizM.A.M.Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mudMaterials202316155110.3390/MA16041551Open DOI
Alghannam, M., Albidah, A., Abbas, H., Al-Salloum, Y., Influence of critical parameters of mix proportions on properties of MK-based geopolymer concrete, Arab. J. Sci. Eng., 2021, 46: 4399–4408. 10.1007/S13369-020-04970-0/FIGURES/10AlghannamM.AlbidahA.AbbasH.Al-SalloumY.Influence of critical parameters of mix proportions on properties of MK-based geopolymer concreteArab. J. Sci. Eng.2021464399440810.1007/S13369-020-04970-0/FIGURES/10Open DOI
Zhuang, X.Y., Chen, L., Komarneni, S., Zhou, C.H., Tong, D.S., Yang, H.M., et al., Fly ash-based geopolymer: Clean production, properties and applications, J. Clean. Prod., 2016, 125: 253–267. 10.1016/J.JCLEPRO.2016.03.019ZhuangX.Y.ChenL.KomarneniS.ZhouC.H.TongD.S.YangH.M.Fly ash-based geopolymer: Clean production, properties and applicationsJ. Clean. Prod.201612525326710.1016/J.JCLEPRO.2016.03.019Open DOI
Abadel, A.A., Albidah, A.S., Altheeb, A.H., Alrshoudi, F.A., Abbas, H., Al-Salloum, Y.A., Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer, Adv. Concr. Constr., 2021, 11: 127–140AbadelA.A.AlbidahA.S.AltheebA.H.AlrshoudiF.A.AbbasH.Al-SalloumY.A.Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymerAdv. Concr. Constr.202111127140Search in Google Scholar
Shaikh, F.U.A., Vimonsatit, V., Effect of cooling methods on residual compressive strength and cracking behavior of fly ash concretes exposed at elevated temperatures, Fire Mater., 2016, 40: 335–350. 10.1002/FAM.2276ShaikhF.U.A.VimonsatitV.Effect of cooling methods on residual compressive strength and cracking behavior of fly ash concretes exposed at elevated temperaturesFire Mater.20164033535010.1002/FAM.2276Open DOI
Hemra, K., Yamaguchi, S., Kobayashi, T., Aungkavattana, P., Jiemsirilers, S., Compressive strength and setting time modification of class C fly ash-based geopolymer partially replaced with kaolin and metakaolin, Key Eng. Mater., 2018, 766: 157–163. 10.4028/WWW.SCIENTIFIC.NET/KEM.766.157HemraK.YamaguchiS.KobayashiT.AungkavattanaP.JiemsirilersS.Compressive strength and setting time modification of class C fly ash-based geopolymer partially replaced with kaolin and metakaolinKey Eng. Mater.201876615716310.4028/WWW.SCIENTIFIC.NET/KEM.766.157Open DOI
Barbhuiya, S., Pang, E., Strength and microstructure of geopolymer based on fly ash and metakaolin, Materials, 2022, 15: 3732. 10.3390/MA15103732BarbhuiyaS.PangE.Strength and microstructure of geopolymer based on fly ash and metakaolinMaterials202215373210.3390/MA15103732Open DOI
Zulkifly, K., Cheng-Yong, H., Yun-Ming, L., Bayuaji, R., Abdullah, MMAB, Bin Ahmad, S., et al., Elevated-temperature performance, combustibility and fire propagation index of fly ash-metakaolin blend geopolymers with addition of monoaluminium phosphate (MAP) and aluminum dihydrogen triphosphate (ATP), Materials (Basel), 2021, 14: 1973. 10.3390/MA14081973ZulkiflyK.Cheng-YongH.Yun-MingL.BayuajiR.AbdullahMMABBin AhmadS.Elevated-temperature performance, combustibility and fire propagation index of fly ash-metakaolin blend geopolymers with addition of monoaluminium phosphate (MAP) and aluminum dihydrogen triphosphate (ATP)Materials (Basel)202114197310.3390/MA14081973Open DOI
Zhang, H.Y., Qiu, G.H., Kodur, V., Yuan, Z.S., Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure, Cem. Concr. Compos., 2020, 106: 103483. 10.1016/J.CEMCONCOMP.2019.103483ZhangH.Y.QiuG.H.KodurV.YuanZ.S.Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposureCem. Concr. Compos.202010610348310.1016/J.CEMCONCOMP.2019.103483Open DOI
Fahim Huseien, G., Mirza, J., Ismail, M., Ghoshal, S.K., Abdulameer Hussein, A., Geopolymer mortars as sustainable repair material: A comprehensive review, Renew. Sustain. Energy Rev., 2017, 80: 54–74. 10.1016/J.RSER.2017.05.076Fahim HuseienG.MirzaJ.IsmailM.GhoshalS.K.Abdulameer HusseinA.Geopolymer mortars as sustainable repair material: A comprehensive reviewRenew. Sustain. Energy Rev.201780547410.1016/J.RSER.2017.05.076Open DOI
Fan, F., Liu, Z., Xu, G., Peng, H., Cai, C.S., Mechanical and thermal properties of fly ash based geopolymers, Constr. Build. Mater., 2018, 160: 66–81. 10.1016/J.CONBUILDMAT.2017.11.023FanF.LiuZ.XuG.PengH.CaiC.S.Mechanical and thermal properties of fly ash based geopolymersConstr. Build. Mater.2018160668110.1016/J.CONBUILDMAT.2017.11.023Open DOI
Junru, R., Huiguo, C., Ruixi, D., Tao, S., Behavior of combined fly ash/GBFS-based geopolymer concrete after exposed to elevated temperature, IOP Conf. Ser. Earth Environ. Sci., 2019, 267: 032056. 10.1088/1755-1315/267/3/032056JunruR.HuiguoC.RuixiD.TaoS.Behavior of combined fly ash/GBFS-based geopolymer concrete after exposed to elevated temperatureIOP Conf. Ser. Earth Environ. Sci.201926703205610.1088/1755-1315/267/3/032056Open DOI
Zhang, H.Y., Kodur, V., Qi, S.L., Cao, L., Wu, B., Development of metakaolin–fly ash based geopolymers for fire resistance applications, Constr. Build. Mater., 2014, 55: 38–45. 10.1016/J.CONBUILDMAT.2014.01.040ZhangH.Y.KodurV.QiS.L.CaoL.WuB.Development of metakaolin–fly ash based geopolymers for fire resistance applicationsConstr. Build. Mater.201455384510.1016/J.CONBUILDMAT.2014.01.040Open DOI
Moradikhou, A.B., Esparham, A., Jamshidi Avanaki, M., Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete, Constr. Build. Mater., 2020, 251: 118965. 10.1016/J.CONBUILDMAT.2020.118965MoradikhouA.B.EsparhamA.Jamshidi AvanakiM.Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concreteConstr. Build. Mater.202025111896510.1016/J.CONBUILDMAT.2020.118965Open DOI
Tahwia, A.M., Ellatief, M.A., Bassioni, G., Heniegal, A.M., Elrahman, M.A., Influence of high temperature exposure on compressive strength and microstructure of ultra-high performance geopolymer concrete with waste glass and ceramic, J. Mater. Res. Technol., 2023, 23: 5681–5697. 10.1016/j.jmrt.2023.02.177TahwiaA.M.EllatiefM.A.BassioniG.HeniegalA.M.ElrahmanM.A.Influence of high temperature exposure on compressive strength and microstructure of ultra-high performance geopolymer concrete with waste glass and ceramicJ. Mater. Res. Technol.2023235681569710.1016/j.jmrt.2023.02.177Open DOI
Assaedi, H., Alomayri, T., Siddika, A., Shaikh, F., Alamri, H., Subaer, S., et al., Effect of nanosilica on mechanical properties and microstructure of PVA fiber-reinforced geopolymer composite (PVA-FRGC), Materials, 2019, 12: 3624. 10.3390/MA12213624AssaediH.AlomayriT.SiddikaA.ShaikhF.AlamriH.SubaerS.Effect of nanosilica on mechanical properties and microstructure of PVA fiber-reinforced geopolymer composite (PVA-FRGC)Materials201912362410.3390/MA12213624Open DOI
Farhan, N.A., Sheikh, M.N., Hadi, M.N.S., Engineering properties of ambient cured alkali-activated fly ash–slag concrete reinforced with different types of steel fiber, J. Mater. Civ. Eng., 2018, 30: 04018142. 10.1061/(ASCE)MT.1943-5533.0002333FarhanN.A.SheikhM.N.HadiM.N.S.Engineering properties of ambient cured alkali-activated fly ash–slag concrete reinforced with different types of steel fiberJ. Mater. Civ. Eng.2018300401814210.1061/(ASCE)MT.1943-5533.0002333Open DOI
Wongruk, R., Songpiriyakij, S., Sukontasukkul, P., Chindaprasirt, P., Properties of steel fiber reinforced geopolymer, Key Eng. Mater., 2015, 659: 143–148. 10.4028/WWW.SCIENTIFIC.NET/KEM.659.143WongrukR.SongpiriyakijS.SukontasukkulP.ChindaprasirtP.Properties of steel fiber reinforced geopolymerKey Eng. Mater.201565914314810.4028/WWW.SCIENTIFIC.NET/KEM.659.143Open DOI
Aygörmez, Y., Canpolat, O., Al-mashhadani, M.M., Uysal, M., Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites, Constr. Build. Mater., 2020, 235: 117502. 10.1016/J.CONBUILDMAT.2019.117502AygörmezY.CanpolatO.Al-mashhadaniM.M.UysalM.Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer compositesConstr. Build. Mater.202023511750210.1016/J.CONBUILDMAT.2019.117502Open DOI
Dhasindrakrishna, K., Pasupathy, K., Ramakrishnan, S., Sanjayan, J., Rheology and elevated temperature performance of geopolymer foam concrete with varying PVA fibre dosage, Mater. Lett., 2022, 328: 133122. 10.1016/J.MATLET.2022.133122DhasindrakrishnaK.PasupathyK.RamakrishnanS.SanjayanJ.Rheology and elevated temperature performance of geopolymer foam concrete with varying PVA fibre dosageMater. Lett.202232813312210.1016/J.MATLET.2022.133122Open DOI
ASTM C604, Standard test method for true specific gravity of refractory materials by gas-comparison pycnometer, american society for testing and materials (ASTM), West Conshohocken, PA, USA 618, 2012ASTM C604Standard test method for true specific gravity of refractory materials by gas-comparison pycnometer, american society for testing and materials (ASTM), West Conshohocken, PA, USA 6182012Search in Google Scholar
ISO, ISO 834: Fire resistance tests-elements of building construction, International Organization for Standardization, Geneva, Switzerland, 1999ISOISO 834: Fire resistance tests-elements of building construction, International Organization for Standardization, Geneva, Switzerland1999Search in Google Scholar
ASTM C39, Test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken, 2017, 10.1520/C0039_C0039M-17BASTM C39Test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken201710.1520/C0039_C0039M-17BOpen DOI
Albidah, A., Abadel, A., Alrshoudi, F., Altheeb, A., Abbas, H., Al-Salloum, Y., Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperatures, J. Mater. Res. Technol., 2020, 9: 10732–10745AlbidahA.AbadelA.AlrshoudiF.AltheebA.AbbasH.Al-SalloumY.Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperaturesJ. Mater. Res. Technol.202091073210745Search in Google Scholar
Elsanadedy, H., Almusallam, T., Al-Salloum, Y., Iqbal, R., Effect of high temperature on structural response of reinforced concrete circular columns strengthened with fiber reinforced polymer composites, J. Compos. Mater., 2017, 51: 333–355ElsanadedyH.AlmusallamT.Al-SalloumY.IqbalR.Effect of high temperature on structural response of reinforced concrete circular columns strengthened with fiber reinforced polymer compositesJ. Compos. Mater.201751333355Search in Google Scholar
Albidah, A., Alqarni, A.S., Abbas, H., Almusallam, T., Al-Salloum, Y., Behavior of Metakaolin-Based geopolymer concrete at ambient and elevated temperatures, Constr. Build. Mater, 2022, 317: 125910AlbidahA.AlqarniA.S.AbbasH.AlmusallamT.Al-SalloumY.Behavior of Metakaolin-Based geopolymer concrete at ambient and elevated temperaturesConstr. Build. Mater2022317125910Search in Google Scholar
Tadepalli, P.R., Mo, Y.L., Hsu, T.T.C., Vogel, J., Mechanical properties of steel fiber reinforced concrete beams, Structures Congress 2009: Don’t Mess with Structural Engineers: Expanding Our Role, ASCE proceeding, 2009, p. 1–10. 10.1061/41031(341)115TadepalliP.R.MoY.L.HsuT.T.C.VogelJ.Mechanical properties of steel fiber reinforced concrete beamsStructures Congress 2009: Don’t Mess with Structural Engineers: Expanding Our RoleASCE proceeding2009p. 11010.1061/41031(341)115Open DOI
Thomas, J., Ramaswamy, A., Mechanical properties of steel fiber-reinforced concrete, J. Mater. Civ. Eng., 2007, 19: 385–392ThomasJ.RamaswamyA.Mechanical properties of steel fiber-reinforced concreteJ. Mater. Civ. Eng.200719385392Search in Google Scholar
Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., Akil, H.M., Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibre, Constr. Build. Mater., 2020, 233: 117194AlwesabiE.A.H.BakarB.H.A.AlshaikhI.M.H.AkilH.M.Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibreConstr. Build. Mater.2020233117194Search in Google Scholar
Batista, R.P., Trindade, A.C.C., Borges, P.H.R., Silva, F.A., Silica fume as precursor in the development of sustainable and high-performance MK-based alkali-activated materials reinforced with short PVA fibers, Front. Mater., 2019, 6: 77BatistaR.P.TrindadeA.C.C.BorgesP.H.R.SilvaF.A.Silica fume as precursor in the development of sustainable and high-performance MK-based alkali-activated materials reinforced with short PVA fibersFront. Mater.2019677Search in Google Scholar
Ekaputri, J.J., Junaedi, S., Effect of curing temperature and fiber on metakaolin-based geopolymer, Procedia Eng., 2017, 171: 572–583EkaputriJ.J.JunaediS.Effect of curing temperature and fiber on metakaolin-based geopolymerProcedia Eng.2017171572583Search in Google Scholar
Xiao, S., Cai, Y., Guo, Y., Lin, J., Liu, G., Lan, X., et al., Experimental study on axial compressive performance of polyvinyl alcohol fibers reinforced fly ash—slag geopolymer composites, Polymers (Basel), 2021, 14: 142XiaoS.CaiY.GuoY.LinJ.LiuG.LanX.Experimental study on axial compressive performance of polyvinyl alcohol fibers reinforced fly ash—slag geopolymer compositesPolymers (Basel)202114142Search in Google Scholar
Zhong, H., Zhang, M., Effect of recycled tyre polymer fibre on engineering properties of sustainable strain hardening geopolymer composites, Cem. Concr. Compos., 2021, 122: 104167ZhongH.ZhangM.Effect of recycled tyre polymer fibre on engineering properties of sustainable strain hardening geopolymer compositesCem. Concr. Compos.2021122104167Search in Google Scholar
Zhang, P., Feng, Z., Yuan, W., Hu, S., Yuan, P., Effect of PVA fiber on properties of geopolymer composites: A comprehensive review, J. Mater. Res. Technol., 2024, 29ZhangP.FengZ.YuanW.HuS.YuanP.Effect of PVA fiber on properties of geopolymer composites: A comprehensive reviewJ. Mater. Res. Technol.202429Search in Google Scholar
Kong, D.L.Y., Sanjayan, J.G., Damage behavior of geopolymer composites exposed to elevated temperatures, Cem. Concr. Compos., 2008, 30: 986–991KongD.L.Y.SanjayanJ.G.Damage behavior of geopolymer composites exposed to elevated temperaturesCem. Concr. Compos.200830986991Search in Google Scholar
Malik, M., Bhattacharyya, S.K., Barai, S.V., Microstructural changes in concrete: Postfire scenario, J. Mater. Civ. Eng., 2021, 33: 04020462MalikM.BhattacharyyaS.K.BaraiS.V.Microstructural changes in concrete: Postfire scenarioJ. Mater. Civ. Eng.20213304020462Search in Google Scholar
Behnood, A., Ghandehari, M., Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures, Fire Saf. J., 2009, 44: 1015–1022. 10.1016/j.firesaf.2009.07.001BehnoodA.GhandehariM.Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperaturesFire Saf. J.2009441015102210.1016/j.firesaf.2009.07.001Open DOI
Poon, C.-S., Azhar, S., Anson, M., Wong, Y.-L., Comparison of the strength and durability performance of normal-and high-strength pozzolanic concretes at elevated temperatures, Cem. Concr. Res., 2001, 31: 1291–1300PoonC.-S.AzharS.AnsonM.WongY.-L.Comparison of the strength and durability performance of normal-and high-strength pozzolanic concretes at elevated temperaturesCem. Concr. Res.20013112911300Search in Google Scholar
Chang, Y.F., Chen, Y.H., Sheu, M.S., Yao, G.C., Residual stress–strain relationship for concrete after exposure to high temperatures, Cem. Concr. Res., 2006, 36: 1999–2005. 10.1016/j.cemconres.2006.05.029ChangY.F.ChenY.H.SheuM.S.YaoG.C.Residual stress–strain relationship for concrete after exposure to high temperaturesCem. Concr. Res.2006361999200510.1016/j.cemconres.2006.05.029Open DOI
Li, M., Qian, C., Sun, W., Mechanical properties of high-strength concrete after fire, Cem. Concr. Res., 2004, 34: 1001–1005. 10.1016/j.cemconres.2003.11.007LiM.QianC.SunW.Mechanical properties of high-strength concrete after fireCem. Concr. Res.2004341001100510.1016/j.cemconres.2003.11.007Open DOI
Abadel, A., Elsanadedy, H., Almusallam, T., Alaskar, A., Abbas, H., Al-Salloum, Y., Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes, Eur. J. Environ. Civ. Eng., 2022, 26: 6746–6765AbadelA.ElsanadedyH.AlmusallamT.AlaskarA.AbbasH.Al-SalloumY.Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimesEur. J. Environ. Civ. Eng.20222667466765Search in Google Scholar
Peng, Z., Kong, L.X., A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites, Polym. Degrad. Stab., 2007, 92: 1061–1071PengZ.KongL.X.A thermal degradation mechanism of polyvinyl alcohol/silica nanocompositesPolym. Degrad. Stab.20079210611071Search in Google Scholar
Sarker, P.K., Kelly, S., Yao, Z., Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete, Mater. Des., 2014, 63: 584–592SarkerP.K.KellyS.YaoZ.Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concreteMater. Des.201463584592Search in Google Scholar
Alshaikh, I.M.H., Abu Bakar, B.H., Alwesabi, E.A.H., Abadel, A.A., Alghamdi, H., Wasim, M., An experimental study on enhancing progressive collapse resistance using a steel fiber–reinforced concrete frame, J. Struct. Eng., 2022, 148: 04022087AlshaikhI.M.H.Abu BakarB.H.AlwesabiE.A.H.AbadelA.A.AlghamdiH.WasimM.An experimental study on enhancing progressive collapse resistance using a steel fiber–reinforced concrete frameJ. Struct. Eng.202214804022087Search in Google Scholar
Alwesabi, E.A., Bakar, B.H.A., Alshaikh, I.M.H., Akil, H.M., Impact resistance of plain and rubberized concrete containing steel and polypropylene hybrid fiber, Mater. Today Commun., 2020, 25: 101640AlwesabiE.A.BakarB.H.A.AlshaikhI.M.H.AkilH.M.Impact resistance of plain and rubberized concrete containing steel and polypropylene hybrid fiberMater. Today Commun.202025101640Search in Google Scholar
Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., Abadel, A.A., Alghamdi, H., Wasim, M., An experimental study of compressive toughness of steel–polypropylene hybrid fibre-reinforced concrete, Structures, 2022, 37: 379–388AlwesabiE.A.H.BakarB.H.A.AlshaikhI.M.H.AbadelA.A.AlghamdiH.WasimM.An experimental study of compressive toughness of steel–polypropylene hybrid fibre-reinforced concreteStructures202237379388Search in Google Scholar
Zhang, P., Han, X., Zheng, Y., Wan, J., Hui, D., Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete, Rev. Adv. Mater. Sci., 2021, 60: 418–437ZhangP.HanX.ZhengY.WanJ.HuiD.Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concreteRev. Adv. Mater. Sci.202160418437Search in Google Scholar
Abadel, A.A., Masmoudi, R., Khan, M.I., Axial behavior of square and circular concrete columns confined with CFRP sheets under elevated temperatures: Comparison with welded-wire mesh steel confinement, Structures, 2022, 45: 126–144AbadelA.A.MasmoudiR.KhanM.I.Axial behavior of square and circular concrete columns confined with CFRP sheets under elevated temperatures: Comparison with welded-wire mesh steel confinementStructures202245126144Search in Google Scholar
Zheng, J., Qi, L., Zheng, Y., Zheng, L., Mechanical properties and compressive constitutive model of steel fiber-reinforced geopolymer concrete, J. Build. Eng., 2023, 80: 108161ZhengJ.QiL.ZhengY.ZhengL.Mechanical properties and compressive constitutive model of steel fiber-reinforced geopolymer concreteJ. Build. Eng.202380108161Search in Google Scholar