This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Boulos, M.I., Fauchais, P., Pfender, E., Plasma torches for cutting, welding and PTA coating, Handbook of thermal plasmas, Springer International Publishing, 2017, pp. 1–83. 10.1007/978-3-319-12183-3_47-1BoulosM.I.FauchaisP.PfenderE.Plasma torches for cutting, welding and PTA coatingHandbook of thermal plasmasSpringer International Publishing2017pp. 18310.1007/978-3-319-12183-3_47-1Open DOI
Chen, L., Li, M., Wang, S., Guo, Z., Liang, B., Xue, J., et al., Microstructure and corrosion resistance of Ni-Al coating prepared by plasma transferred arc technology, J. Mater. Eng. Perform., 2023, 33: 1596–1614. 10.1007/s11665-023-08084-0ChenL.LiM.WangS.GuoZ.LiangB.XueJ.Microstructure and corrosion resistance of Ni-Al coating prepared by plasma transferred arc technologyJ. Mater. Eng. Perform.2023331596161410.1007/s11665-023-08084-0Open DOI
Kalyankar, V.D., Wanare, S.P., Comparative investigations on microstructure and slurry abrasive wear resistance of NiCrBSi and NiCrBSi-WC composite hardfacings deposited on 304 stainless steel, Tribol. Ind., 2022, 44: 199–211. 10.24874/ti.1075.03.21.05KalyankarV.D.WanareS.P.Comparative investigations on microstructure and slurry abrasive wear resistance of NiCrBSi and NiCrBSi-WC composite hardfacings deposited on 304 stainless steelTribol. Ind.20224419921110.24874/ti.1075.03.21.05Open DOI
Suraj, R., Hardfacing and its effect on wear and corrosion performance of various ferrous welded mild steels, Mater. Today Proc., 2020, 42: 842–850. Elsevier Ltd. 10.1016/j.matpr.2020.11.592SurajR.Hardfacing and its effect on wear and corrosion performance of various ferrous welded mild steelsMater. Today Proc.202042842850Elsevier Ltd.10.1016/j.matpr.2020.11.592Open DOI
Łatka, L., Biskup, P., Development in PTA surface modifications – a review, Adv. Mater. Sci., 2020, 20: 39–53. 10.2478/adms-2020-0009ŁatkaL.BiskupP.Development in PTA surface modifications – a reviewAdv. Mater. Sci.202020395310.2478/adms-2020-0009Open DOI
Gatto, A., Bassoli, E., Fornari, M., Plasma transferred arc deposition of powdered high performances alloys: Process parameters optimisation as a function of alloy and geometrical configuration, Surf. Coat. Technol., 2004, 187: 265–271. 10.1016/j.surfcoat.2004.02.013GattoA.BassoliE.FornariM.Plasma transferred arc deposition of powdered high performances alloys: Process parameters optimisation as a function of alloy and geometrical configurationSurf. Coat. Technol.200418726527110.1016/j.surfcoat.2004.02.013Open DOI
Szala, M., Walczak, M., Hejwowski, T., Factors influencing cavitation erosion of nicrsib hardfacings deposited by oxy-acetylene powder welding on grey cast iron, Adv. Sci. Technol. Res. J., 2021, 15: 376–386. 10.12913/22998624/143304SzalaM.WalczakM.HejwowskiT.Factors influencing cavitation erosion of nicrsib hardfacings deposited by oxy-acetylene powder welding on grey cast ironAdv. Sci. Technol. Res. J.20211537638610.12913/22998624/143304Open DOI
Appiah, A.N.S., Wyględacz, B., Matus, K., Reimanna, Ł, Bialas, O., Batalha, G.F., et al., Microstructure and performance of NiCrBSi coatings prepared by modulated arc currents using powder plasma transferred arc welding technology, Appl. Surf. Sci., 2024, 648: 159065. 10.1016/j.apsusc.2023.159065AppiahA.N.S.WyględaczB.MatusK.ReimannaŁBialasO.BatalhaG.F.Microstructure and performance of NiCrBSi coatings prepared by modulated arc currents using powder plasma transferred arc welding technologyAppl. Surf. Sci.202464815906510.1016/j.apsusc.2023.159065Open DOI
Lachowicz, M., Metallurgical aspect of the corrosion resistance of 7000 series aluminum alloys, Mater. Sci. Pol., 2023, 41: 94–109. 10.2478/msp-2023-0041LachowiczM.Metallurgical aspect of the corrosion resistance of 7000 series aluminum alloysMater. Sci. Pol.2023419410910.2478/msp-2023-0041Open DOI
Swietlicki, A., Walczak, M., Szala, M., Effect of shot peening on corrosion resistance of additive manufactured 17-4PH steel, Mater. Sci. Pol., 2022, 40: 135–151. 10.2478/msp-2022-0038SwietlickiA.WalczakM.SzalaM.Effect of shot peening on corrosion resistance of additive manufactured 17-4PH steelMater. Sci. Pol.20224013515110.2478/msp-2022-0038Open DOI
Poloczek, T., Lont, A., Górka, J., Structure and properties of laser-cladded Inconel 625-based in situ composite coatings on S355JR substrate modified with Ti and C powders, Mater. Sci. Pol., 2022, 40: 14–27. 10.2478/msp-2022-0039PoloczekT.LontA.GórkaJ.Structure and properties of laser-cladded Inconel 625-based in situ composite coatings on S355JR substrate modified with Ti and C powdersMater. Sci. Pol.202240142710.2478/msp-2022-0039Open DOI
Fan, L., Li, X.Y., Chen, H.Y., Du, H.L., Shi, L., Corrosion behavior of spherical chromium carbide reinforced NiCrBSi hardmetal coatings in sulphuric acid solution, Medziagotyra, 2022, 28: 301–308. 10.5755/j02.ms.29584FanL.LiX.Y.ChenH.Y.DuH.L.ShiL.Corrosion behavior of spherical chromium carbide reinforced NiCrBSi hardmetal coatings in sulphuric acid solutionMedziagotyra20222830130810.5755/j02.ms.29584Open DOI
Appiah, A.N.S., Bialas, O., Żuk, M., Czupryński, A., Sasu, D.K., Adamiak, M., Hardfacing of mild steel with wear-resistant Ni-based powders containing tungsten carbide particles using powder plasma transferred arc welding technology, Mater. Sci. Pol., 2022, 40: 42–63. 10.2478/msp-2022-0033AppiahA.N.S.BialasO.ŻukM.CzupryńskiA.SasuD.K.AdamiakM.Hardfacing of mild steel with wear-resistant Ni-based powders containing tungsten carbide particles using powder plasma transferred arc welding technologyMater. Sci. Pol.202240426310.2478/msp-2022-0033Open DOI
Rojas, J.G.M., Ghasri-Khouzani, M., Wolfe, T., Fleck, B., Henein, H., Qureshi, A.J., Preliminary geometrical and microstructural characterization of WC-reinforced NiCrBSi matrix composites fabricated by plasma transferred arc additive manufacturing through Taguchi-based experimentation, Int. J. Adv. Manuf. Technol., 2021, 113: 1451–1468. 10.1007/s00170-020-06388-2RojasJ.G.M.Ghasri-KhouzaniM.WolfeT.FleckB.HeneinH.QureshiA.J.Preliminary geometrical and microstructural characterization of WC-reinforced NiCrBSi matrix composites fabricated by plasma transferred arc additive manufacturing through Taguchi-based experimentationInt. J. Adv. Manuf. Technol.20211131451146810.1007/s00170-020-06388-2Open DOI
Sreevidya, N., Rani, R., Das, C.R., Mathews, T., Albert, S.K., Vasudevan, M., et al., Effect of dilution on high-temperature and high-vacuum tribological behaviour of Ni-Cr-B-Si hardfaced coating, Trans. Indian. Inst. Met., 2023, 76: 3127–3136. 10.1007/s12666-023-02963-9SreevidyaN.RaniR.DasC.R.MathewsT.AlbertS.K.VasudevanM.Effect of dilution on high-temperature and high-vacuum tribological behaviour of Ni-Cr-B-Si hardfaced coatingTrans. Indian. Inst. Met.2023763127313610.1007/s12666-023-02963-9Open DOI
Balanovskii, A.E., Chieu, N.V., The influence of chromium carbide on corrosion resistance of plasma NiCrBSi coating, Prot. Met. Phys. Chem. Surf., 2022, 58: 764–771. 10.1134/S2070205122040074BalanovskiiA.E.ChieuN.V.The influence of chromium carbide on corrosion resistance of plasma NiCrBSi coatingProt. Met. Phys. Chem. Surf.20225876477110.1134/S2070205122040074Open DOI
Ortiz, A., García, A., Cadenas, M., Fernández, M.R., Cuetos, J.M., WC particles distribution model in the cross-section of laser cladded NiCrBSi + WC coatings, for different wt% WC, Surf. Coat. Technol., 2017, 324: 298–306. 10.1016/j.surfcoat.2017.05.086OrtizA.GarcíaA.CadenasM.FernándezM.R.CuetosJ.M.WC particles distribution model in the cross-section of laser cladded NiCrBSi + WC coatings, for different wt% WCSurf. Coat. Technol.201732429830610.1016/j.surfcoat.2017.05.086Open DOI
Qiao, L., Wu, Y., Hong, S., Long, W., Cheng, J., Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying, Ceram. Int., 2021, 47: 1829–1836. 10.1016/j.ceramint.2020.09.009QiaoL.WuY.HongS.LongW.ChengJ.Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF sprayingCeram. Int.2021471829183610.1016/j.ceramint.2020.09.009Open DOI
Huang, S., Sun, D., Xu, D., Wang, W., Xu, H., Microstructures and properties of NiCrBSi/WC biomimetic coatings prepared by plasma spray welding, J. Bionic Eng., 2015, 12: 592–603. 10.1016/S1672-6529(14)60149-9HuangS.SunD.XuD.WangW.XuH.Microstructures and properties of NiCrBSi/WC biomimetic coatings prepared by plasma spray weldingJ. Bionic Eng.20151259260310.1016/S1672-6529(14)60149-9Open DOI
Pierson, H.O., Handbook of chemical vapor deposition: Principles, technology, and applications, Noyes Publications, Westwood, New Jersey, USA, 1999PiersonH.O.Handbook of chemical vapor deposition: Principles, technology, and applicationsNoyes PublicationsWestwood, New Jersey, USA1999Search in Google Scholar
Koczkodaj, S., Mizera, J., Moszczynska, D., Zdunek, J., Plocinska, M., Szpyrka, J., et al., Comparison of the performance properties of commercially produced roller cone bit coatings, Mater. Sci. Pol., 2023, 41: 110–123. 10.2478/msp-2023-0008KoczkodajS.MizeraJ.MoszczynskaD.ZdunekJ.PlocinskaM.SzpyrkaJ.Comparison of the performance properties of commercially produced roller cone bit coatingsMater. Sci. Pol.20234111012310.2478/msp-2023-0008Open DOI
Ji, J.B., Tong, J., Corrosion rate and mechanical properties of 316L stainless steel wires in different corrosive conditions, Appl. Mech. Mater., 2014, 441: 48–52. 10.4028/www.scientific.net/AMM.441.48JiJ.B.TongJ.Corrosion rate and mechanical properties of 316L stainless steel wires in different corrosive conditionsAppl. Mech. Mater.2014441485210.4028/www.scientific.net/AMM.441.48Open DOI
Cai, B., Liu, Y., Tian, X., Wang, F., Li, H., Ji, R., An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater, Corros. Sci., 2010, 52: 3235–3242. 10.1016/j.corsci.2010.05.040CaiB.LiuY.TianX.WangF.LiH.JiR.An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawaterCorros. Sci.2010523235324210.1016/j.corsci.2010.05.040Open DOI
Jin, L., Guo, Y., Liu, F., Electrochemical and stress corrosion behaviors of 316L stainless steel in the borate solution, Int. J. Electrochem. Sci., 2020, 15: 4421–4433JinL.GuoY.LiuF.Electrochemical and stress corrosion behaviors of 316L stainless steel in the borate solutionInt. J. Electrochem. Sci.20201544214433Search in Google Scholar
Szymańska, A., Sikorski, K., Kazior, J., The structure of nanocrystalline stainless steel powders obtained by ball milling and duplex stainless steel formed by their sintering, Solid. State Phenom., Trans Tech Publications Ltd 2005, 101–102: 135–138. 10.4028/www.scientific.net/ssp.101-102.135SzymańskaA.SikorskiK.KaziorJ.The structure of nanocrystalline stainless steel powders obtained by ball milling and duplex stainless steel formed by their sinteringSolid. State Phenom.Trans Tech Publications Ltd 2005101–10213513810.4028/www.scientific.net/ssp.101-102.135Open DOI
Acar, A.N., Ekşi, A.K., Ekicibil, A., Effect of pressure on the magnetic and structural properties of X2CrNiMo17-12-2 austenitic stainless steel prepared by powder metallurgy method, J. Mol. Struct., 2019, 1198: 126876AcarA.N.EkşiA.K.EkicibilA.Effect of pressure on the magnetic and structural properties of X2CrNiMo17-12-2 austenitic stainless steel prepared by powder metallurgy methodJ. Mol. Struct.20191198126876Search in Google Scholar
Głowacka, M., Łabanowski, J., Inżynieria powierzchni, Wydawnictwo PWSZ, Elbląg, 2014 (in Polish)GłowackaM.ŁabanowskiJ.Inżynieria powierzchni, Wydawnictwo PWSZ, Elbląg2014(in Polish)Search in Google Scholar
Pan, L.H., Yang, R.C., Researched on the corrosion resistance of Ni-Cr-Mo-Cu alloy to aqueous change with the APF in regular way: An approach of quantum electrochemistry, Appl. Mech. Mater., 2011, 55–57: 378–381. Trans Tech Publications Ltd. 10.4028/www.scientific.net/AMM.55-57.378PanL.H.YangR.C.Researched on the corrosion resistance of Ni-Cr-Mo-Cu alloy to aqueous change with the APF in regular way: An approach of quantum electrochemistryAppl. Mech. Mater.201155–57378381Trans Tech Publications Ltd.10.4028/www.scientific.net/AMM.55-57.378Open DOI
Yang, J., Zou, H., Li, X., Chen, J., Lv, L., Wen, Y., et al., Effects of Cr content on the corrosion behavior of porous Ni-Cr-Mo-Cu alloys in H3PO4 solution, Mater. Res. Express, 2021, 8: 096522. 10.1088/2053-1591/ac1d1aYangJ.ZouH.LiX.ChenJ.LvL.WenY.Effects of Cr content on the corrosion behavior of porous Ni-Cr-Mo-Cu alloys in H3PO4 solutionMater. Res. Express2021809652210.1088/2053-1591/ac1d1aOpen DOI
Li, X., Yang, J., Feng, X., Hu, Y., Zou, H., Zhang, C., et al., Electrochemical performance of porous Ni-Cr-Mo-Cu alloys for hydrogen evolution reactions in alkali solution, Mater. Res. Express, 2020, 7: 095505. 10.1088/2053-1591/abb562LiX.YangJ.FengX.HuY.ZouH.ZhangC.Electrochemical performance of porous Ni-Cr-Mo-Cu alloys for hydrogen evolution reactions in alkali solutionMater. Res. Express2020709550510.1088/2053-1591/abb562Open DOI
https://www.swedishmesteel.com/files/mr/Durmat%20PTA%20Laser%20Thermal%20Spray.pdf, Durum Wear Protection GMBH, 2024https://www.swedishmesteel.com/files/mr/Durmat%20PTA%20Laser%20Thermal%20Spray.pdfDurum Wear Protection GMBH2024Search in Google Scholar
PN-EN 10025-2, Hot rolled products of structural steels, Warszawa, Polski Komitet Normalizacyjny, 2019PN-EN 10025-2, Hot rolled products of structural steels, Warszawa, Polski Komitet Normalizacyjny2019Search in Google Scholar
KT 106 K i O przed KMM. PN-EN ISO 17475:2010, Korozja metali i stopów- Elektrochemiczne metody badań- Wytyczne wykonywania potencjostycznych i potencjodynamicznych pomiarów polaryzacyjnych, Poland, 2010KT 106 K i O przed KMM. PN-EN ISO 17475:2010Korozja metali i stopów- Elektrochemiczne metody badań- Wytyczne wykonywania potencjostycznych i potencjodynamicznych pomiarów polaryzacyjnych, Poland2010Search in Google Scholar
Haribaskar, R., Kumar, T.S., The impact of successive laser shock peening on surface integrity and residual stress distribution of laser powder-bed fused stainless steel 316L, Phys. Scr., 2024, 99: 055929. 10.1088/1402-4896/ad385aHaribaskarR.KumarT.S.The impact of successive laser shock peening on surface integrity and residual stress distribution of laser powder-bed fused stainless steel 316LPhys. Scr.20249905592910.1088/1402-4896/ad385aOpen DOI
Matějíček, J., Vosáhlo, J., Rohan, P., PTA deposition of W + Cu composites for fusion reactors. Metal 2021 - 30th Anniversary International Conference on Metallurgy and Materials, Conference Proceedings, TANGER Ltd., 2021, pp. 1013–1022. 10.37904/metal.2021.4249MatějíčekJ.VosáhloJ.RohanP.PTA deposition of W + Cu composites for fusion reactors. Metal 2021 - 30th Anniversary International Conference on Metallurgy and Materials, Conference Proceedings, TANGER Ltd.2021pp. 1013–102210.37904/metal.2021.4249Open DOI
Takano, E.H., de Queiroz, D., D’Oliveira, A.S.C.M., Evaluation of processing parameters on pta hardfacing surfaces, Weld. Int., 2010, 24: 241–248. 10.1080/09507110902843974TakanoE.H.de QueirozD.D’OliveiraA.S.C.M.Evaluation of processing parameters on pta hardfacing surfacesWeld. Int.20102424124810.1080/09507110902843974Open DOI
Yan, M., Zhu, W.Z., Surface remelting of Ni-Cr-B-Si cladding with a micro-beam plasma arc, Surf. Coat. Technol., 1997, 92: 157–163.YanM.ZhuW.Z.Surface remelting of Ni-Cr-B-Si cladding with a micro-beam plasma arcSurf. Coat. Technol.199792157163Search in Google Scholar
Farahpour, P., Edris, H., Kheirikhah, M.M., Mirrahimi, A.H., Influence of high velocity oxy-fuel parameters on the corrosion resistance of NiCr coatings, Proc. Inst. Mech. Eng., Part L, 2013, 227: 318–335. 10.1177/1464420712459993FarahpourP.EdrisH.KheirikhahM.M.MirrahimiA.H.Influence of high velocity oxy-fuel parameters on the corrosion resistance of NiCr coatingsProc. Inst. Mech. Eng., Part L201322731833510.1177/1464420712459993Open DOI
Lisiecki, A., Kurc-Lisiecka, A., Laser cladding of NiCrBSi/WC + W2C composite coatings, Coatings, 2023, 13: 576. 10.3390/coatings13030576LisieckiA.Kurc-LisieckaA.Laser cladding of NiCrBSi/WC + W2C composite coatingsCoatings20231357610.3390/coatings13030576Open DOI
Matějíček, J., Antoš, J., Rohan, P., W + Cu and W + Ni composites and fgms prepared by plasma transferred arc cladding, Materials, 2021, 14: 1–11. 10.3390/ma14040789MatějíčekJ.AntošJ.RohanP.W + Cu and W + Ni composites and fgms prepared by plasma transferred arc claddingMaterials20211411110.3390/ma14040789Open DOI
Makarov, A.V., Soboleva, N.N., Malygina, I.Y., Osintseva, A.L., Formation of wear-resistant chromium-nickel coating with extra high thermal stability by combined laser-and-heat treatment, Met. Sci. Heat. Treat., 2015, 57: 161–168. 10.1007/s11041-015-9856-8MakarovA.V.SobolevaN.N.MalyginaI.Y.OsintsevaA.L.Formation of wear-resistant chromium-nickel coating with extra high thermal stability by combined laser-and-heat treatmentMet. Sci. Heat. Treat.20155716116810.1007/s11041-015-9856-8Open DOI
Makarov, A., Korobov, Y., Soboleva, N., Khudorozhkova, Y., Vopneruk, A., Balu, P., et al., Wear-resistant nickel-based laser clad coatings for high-temperature applications, Lett. Mater., 2019, 9: 470–474. 10.22226/2410-3535-2019-4-470-474MakarovA.KorobovY.SobolevaN.KhudorozhkovaY.VopnerukA.BaluP.Wear-resistant nickel-based laser clad coatings for high-temperature applicationsLett. Mater.2019947047410.22226/2410-3535-2019-4-470-474Open DOI
Sourmail, T., Precipitation in creep resistant austenitic stainless steels, Mater. Sci. Technol., 2001, 17: 1–14. 10.1179/026708301101508972SourmailT.Precipitation in creep resistant austenitic stainless steelsMater. Sci. Technol.20011711410.1179/026708301101508972Open DOI
Srinivasan, N., Sensitization of austenitic stainless steels: Current developments, trends, and future directions, Metall. Microstruct. Anal., 2021, 10: 133–147. 10.1007/s13632-021-00724-ySrinivasanN.Sensitization of austenitic stainless steels: Current developments, trends, and future directionsMetall. Microstruct. Anal.20211013314710.1007/s13632-021-00724-yOpen DOI
Kaur, H., Singh, H., Improving pitting corrosion resistance of AISI 316L weld overlays via inconel 82 additions, Mater. Today Proc., 2022, 62: A7–A13. 10.1016/j.matpr.2022.08.472KaurH.SinghH.Improving pitting corrosion resistance of AISI 316L weld overlays via inconel 82 additionsMater. Today Proc.202262A7A1310.1016/j.matpr.2022.08.472Open DOI
Parvathavarthini, N. Sensitization and testing for intergranular corrosion. Corrosion of austenitic stainless steels, Elsevier, Cambridge, England, 2002, pp. 117–138. 10.1533/9780857094018.139ParvathavarthiniN.Sensitization and testing for intergranular corrosion. Corrosion of austenitic stainless steelsElsevierCambridge, England2002pp. 11713810.1533/9780857094018.139Open DOI
Di Schino, A., Testani, C., Corrosion behavior and mechanical properties of AISI 316 stainless steel Clad Q235 plate, Metals (Basel), 2020, 10: 552. 10.3390/met10040552Di SchinoA.TestaniC.Corrosion behavior and mechanical properties of AISI 316 stainless steel Clad Q235 plateMetals (Basel)20201055210.3390/met10040552Open DOI
Padilha, A.F., Rios, P.R., Decomposition of austenite in austenitic stainless steels, ISIJ Int., 2002, 42: 325–327. 10.2355/isijinternational.42.325PadilhaA.F.RiosP.R.Decomposition of austenite in austenitic stainless steelsISIJ Int.20024232532710.2355/isijinternational.42.325Open DOI
Gadhikar, A.A., Sharma, C.P., Goel, D.B., Sharma, A., Effect of heat treatment on carbides in 23-8-N steel, Met. Sci. Heat. Treat., 2011, 53: 293–298. 10.1007/s11041-011-9385-zGadhikarA.A.SharmaC.P.GoelD.B.SharmaA.Effect of heat treatment on carbides in 23-8-N steelMet. Sci. Heat. Treat.20115329329810.1007/s11041-011-9385-zOpen DOI
de Souza Silva, E.M.F., da Fonseca, G.S., Ferreira, E.A., Microstructural and selective dissolution analysis of 316L austenitic stainless steel, J. Mater. Res. Technol., 2021, 15: 4317–4329. 10.1016/j.jmrt.2021.10.009de Souza SilvaE.M.F.da FonsecaG.S.FerreiraE.A.Microstructural and selective dissolution analysis of 316L austenitic stainless steelJ. Mater. Res. Technol.2021154317432910.1016/j.jmrt.2021.10.009Open DOI
Souto, J.I.V.d., Ferreira, S.D., Lima, J.S.d., Castro, W.B.d., Grassi, E.N.D., Santos, T.F.d.A., Effect of GMAW Process parameters and heat input on weld overlay of austenitic stainless steel 316L-Si, Soldag. Inspeção, 2023, 28: e2809. 10.1590/0104-9224/si28.09SoutoJ.I.V.d.FerreiraS.D.LimaJ.S.d.CastroW.B.d.GrassiE.N.D.SantosT.F.d.A.Effect of GMAW Process parameters and heat input on weld overlay of austenitic stainless steel 316L-SiSoldag. Inspeção202328e280910.1590/0104-9224/si28.09Open DOI
Anita, T., Shaikh, H., Khatak, H.S., Amarendra, G., Effect of heat input on the stress corrosion cracking behavior of weld metal of nitrogen-added AISI Type 316 stainless steel, Corrosion, 2004, 60: 873–880. 10.5006/1.3287869AnitaT.ShaikhH.KhatakH.S.AmarendraG.Effect of heat input on the stress corrosion cracking behavior of weld metal of nitrogen-added AISI Type 316 stainless steelCorrosion20046087388010.5006/1.3287869Open DOI
Fang, Z., Wu, Y., Zhu, R., Stress corrosion cracking of type 304 stainless steel weldments in the active state, Corrosion, 1994, 50: 171–175. 10.5006/1.3293508FangZ.WuY.ZhuR.Stress corrosion cracking of type 304 stainless steel weldments in the active stateCorrosion19945017117510.5006/1.3293508Open DOI
Lachowicz, M., Nowak, D., Lachowicz, M., Korozja połączenia spawanego wykonanego na stali austenitycznej X2CrNi18-9 wywołana występowaniem fazy sigma, Prz. Spaw. Weld. Technol. Rev., 2017, 89:22–26. 10.26628/ps.v89i8.800LachowiczM.NowakD.LachowiczM.Korozja połączenia spawanego wykonanego na stali austenitycznej X2CrNi18-9 wywołana występowaniem fazy sigmaPrz. Spaw. Weld. Technol. Rev.201789222610.26628/ps.v89i8.800Open DOI
Walczak, M., Szala, M., Okuniewski, W., Assessment of corrosion resistance and hardness of shot peened X5CrNi18-10 steel, Materials, 2022, 15: 9000. 10.3390/ma15249000WalczakM.SzalaM.OkuniewskiW.Assessment of corrosion resistance and hardness of shot peened X5CrNi18-10 steelMaterials202215900010.3390/ma15249000Open DOI
Rutkowska-Gorczyca, M., Podrez-Radziszewska, M., Kajtoch, J., Corrosion resistance and microstructure of steel aisi 316L after cold plastic deformation, Metall. Foundry Eng., 2009, 35: 35. 10.7494/mafe.2009.35.1.35Rutkowska-GorczycaM.Podrez-RadziszewskaM.KajtochJ.Corrosion resistance and microstructure of steel aisi 316L after cold plastic deformationMetall. Foundry Eng.2009353510.7494/mafe.2009.35.1.35Open DOI
Lachowicz, M.M., Lachowicz, M.B., The mechanism of corrosion of steel 304L in the presence of copper in industrial installations/Mechanizm korozji stali austenitycznej 304L W obecności miedzi w instalacjach przemysłowych, Arch. Metall. Mater., 2015, 60: 2657–2662. 10.1515/amm-2015-0429LachowiczM.M.LachowiczM.B.The mechanism of corrosion of steel 304L in the presence of copper in industrial installations/Mechanizm korozji stali austenitycznej 304L W obecności miedzi w instalacjach przemysłowychArch. Metall. Mater.2015602657266210.1515/amm-2015-0429Open DOI
Saadi, S.A., Yi, Y., Cho, P., Jang, C., Beeley, P., Passivity breakdown of 316L stainless steel during potentiodynamic polarization in NaCl solution, Corros. Sci., 2016, 111: 720–727. 10.1016/j.corsci.2016.06.011SaadiS.A.YiY.ChoP.JangC.BeeleyP.Passivity breakdown of 316L stainless steel during potentiodynamic polarization in NaCl solutionCorros. Sci.201611172072710.1016/j.corsci.2016.06.011Open DOI
Yi, Y., Cho, P., Al Zaabi, A., Addad, Y., Jang, C., Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution, Corros. Sci., 2013, 74: 92–97. 10.1016/j.corsci.2013.04.028YiY.ChoP.Al ZaabiA.AddadY.JangC.Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solutionCorros. Sci.201374929710.1016/j.corsci.2013.04.028Open DOI
Riley, A.M., Wells, D.B., Williams, D.E., Initiation events for pitting corrosion of stainless steel?, Corros. Sci., 1991, 32: 1307–1313. 10.1016/0010-938X(91)90050-YRileyA.M.WellsD.B.WilliamsD.E.Initiation events for pitting corrosion of stainless steel?Corros. Sci.1991321307131310.1016/0010-938X(91)90050-YOpen DOI
Gu, R., Trisnanto, S.R., Brochu, M., Omanovic, S., Cyclic potentiodynamic passivation of 316L stainless steels of different crystallographic orientation produced by laser powder bed fusion: Towards the improvement of corrosion resistance, Can. J. Chem. Eng., 2024, 102: 196–202. 10.1002/cjce.25050GuR.TrisnantoS.R.BrochuM.OmanovicS.Cyclic potentiodynamic passivation of 316L stainless steels of different crystallographic orientation produced by laser powder bed fusion: Towards the improvement of corrosion resistanceCan. J. Chem. Eng.202410219620210.1002/cjce.25050Open DOI
Lachowicz, M., Elektrochemiczne i mikrostrukturalne aspekty rozwoju niszczenia korozyjnego części maszyn i urządzeń, Instytut Technologii Eksploatacji, Wydawnictwo Naukowe (in Polish), 2020LachowiczM.Elektrochemiczne i mikrostrukturalne aspekty rozwoju niszczenia korozyjnego części maszyn i urządzeń, Instytut Technologii Eksploatacji, Wydawnictwo Naukowe (in Polish)2020Search in Google Scholar
Lachowicz, M.M., Metallurgical aspects of the corrosion resistance of 7000 series aluminum alloys – a review, Mater. Sci. Pol., 2023, 41: 159–180. 10.2478/msp-2023-0041LachowiczM.M.Metallurgical aspects of the corrosion resistance of 7000 series aluminum alloys – a reviewMater. Sci. Pol.20234115918010.2478/msp-2023-0041Open DOI