Acceso abierto

Compressive behavior of fiber-reinforced concrete strengthened with CFRP strips after exposure to temperature environments

 y   
08 nov 2024

Cite
Descargar portada

Figure 1

The fiber types: (a) PPF and (b) SF.
The fiber types: (a) PPF and (b) SF.

Figure 2

Methodology of experiments: casting, curing, heating, sandblasting, strengthening, and testing.
Methodology of experiments: casting, curing, heating, sandblasting, strengthening, and testing.

Figure 3

CFRP wrapping pattern.
CFRP wrapping pattern.

Figure 4

The heating and cooling curves used in this study.
The heating and cooling curves used in this study.

Figure 5

The failure patterns for strengthened and unstrengthened specimens.
The failure patterns for strengthened and unstrengthened specimens.

Figure 6

Effectiveness of CFRP jackets for all specimens at (a) 26°C and (b) 600°C.
Effectiveness of CFRP jackets for all specimens at (a) 26°C and (b) 600°C.

Figure 7

Stress–axial strain curves for all concrete cylinders at (a) 26°C and (b) 600°C.
Stress–axial strain curves for all concrete cylinders at (a) 26°C and (b) 600°C.

Figure 8

Effect of fiber types on compressive strength of concrete mixtures.
Effect of fiber types on compressive strength of concrete mixtures.

Figure 9

The concrete’s thermal properties at various temperatures: (a) expansion coefficient, (b) specific heat, and (c) thermal conductivity.
The concrete’s thermal properties at various temperatures: (a) expansion coefficient, (b) specific heat, and (c) thermal conductivity.

Figure 10

The concrete’s mechanical properties at various temperatures: (a) stress–strain curves for unconfined deep beam (C0-A) and (b) reduction coefficient for modulus of elasticity.
The concrete’s mechanical properties at various temperatures: (a) stress–strain curves for unconfined deep beam (C0-A) and (b) reduction coefficient for modulus of elasticity.

Figure 11

FE simulation steps: (a) element types, (b) load and support, and (c) meshing size.
FE simulation steps: (a) element types, (b) load and support, and (c) meshing size.

Figure 12

Failure mode of FE specimens.
Failure mode of FE specimens.

Test matrix used in the experimental program of this investigation_

Mixture ID Specimen ID Temperature (°C) Fiber volume Strengthening No. of specimens
SF (%) PPF (%) Total (%)
M-C0 C0-A 26 3
C0-T 600 3
C0-A-S 26 CFRP 3
C0-T-S 600 3
M-PPF PPF-A 26 0.2 0.2 3
PPF-T 600 3
PPF-A-S 26 CFRP 3
PPF-T-S 600 3
M-SF SF-A 26 0.6 0.6 3
SF-T 600 3
SF-A-S 26 CFRP 3
SF-T-S 600 3
M-SF + PPF SF + PPF-A 26 0.6 0.2 0.8 3
SF + PPF-T 600 3
SF + PPF-A-S 26 CFRP 3
SF + PPF-T-S 600 3
Total no. of specimens 48

Parameter values of concrete damaged plasticity model in this study_

Parameters Dilation angle (°) Potential eccentricity Biaxial to uniaxial compressive strengths Compressive meridian Viscosity parameter
Unconfined concrete 30 0.1 1.16 0.7 0
Confined concrete 15 0.1 1.16 0.7 0

FE and experimental test results_

Specimens ID Compressive strength (MPa) Experimental/FE
Experimental FE
C0-A 30.2 31.3 1.04
C0-T 14.1 15.2 1.08
C0-A-S 48.1 51.7 1.07
C0-T-S 30.2 32.1 1.06
SF-A 40.7 43.1 1.06
SF-T 28.5 30.5 1.07
SF-A-S 56.7 59.4 1.05
SF-T-S 43.6 46.9 1.08
PPF-A 32.9 34.7 1.05
PPF-T 18.0 19.8 1.10
PPF-A-S 50.7 54.3 1.07
PPF-T-S 35.3 38.4 1.09
SF + PPF-A 40.5 43.8 1.08
SF + PPF-T 30.9 34.1 1.10
SF + PPF-A-S 53.5 58.4 1.09
SF + PPF-T-S 40.1 44.2 1.10

Fiber characteristics_

Properties Fiber
PPF SF
Shape Crimped Hooked ends
Section dimensions (mm) 1.0 × 0.6 (rectangular cross section) 0.75 (circular cross section)
Length (mm) 50 60
Tensile strength (MPa) 550 1225
Modulus of elasticity (Gpa) 4.0 200
Specific gravity 0.90 7.85

Parameter values of CFRP material characteristics in this study_

Parameters Value
Elastic properties Poisson’s ratio N 0.3
Elastic modulus E 1 (MPa) 220
E 2 (MPa) 10
Modulus of rigidity G 12 = G 13 (MPa) 5
CFRP strength Tensile strength f t1 (MPa) 3,000
f t2 (MPa) 12
Compressive strength f c1 = f c2 (MPa) 12
Shear strength V f1 = V f2 (MPa) 12
Damage evolution Tensile fracture energy G t1 (mJ/mm2) 95
G t2 (mJ/mm2) 1.2
Compressive fracture energy G c1 (mJ/mm2) 95
G c2 (mJ/mm2) 1.2

Epoxy adhesive and CFRP strip properties_

Material Property Value Notes
CFRP strip Tensile Young’s modulus 68.9 GPa Experimental values
Thickness 1.0 mm
Tensile strength 1122 MPa
Tensile strain 1.7%
Epoxy adhesive Tensile strength 71.5 MPa Given by the manufacturer
Tensile Young’s modulus 1.86 GPa
Tensile strain at break %5.25

Concrete mixture proportions (in kg/m3)_

Material Weight
Ordinary Portland cement 378
Water 190.5
Silica sand 489
Crush sand 294
Coarse aggregate d agg. = 20 mm 675
d agg. = 10 mm 320
Super-plasticizer 1.0 L

Summary of experimental test results_

Specimens Compressive strength (MPa) f cc/f c* Relative difference (%) ** Initial stiffness (N/mm) Relative difference (%)*
C0-A 30.2 20133.3
C0-T 14.1 −53.3 2169.2 −89.2
C0-A-S 48.1 1.59 +59.1 34945.5 +73.6
C0-T-S 30.2 2.14 +0.1 2419.3 −88.0
SF-A 40.7 26688.5
SF-T 28.5 −30.0 4560.0 −82.9
SF-A-S 56.7 1.39 +39.3 32400.0 +21.4
SF-T-S 43.6 1.53 +7.2 8729.1 −67.3
PPF-A 32.9 43866.7
PPF-T 18.0 −45.3 3600.0 −85.0
PPF-A-S 50.7 1.54 +54.1 33800.0 +41.3
PPF-T-S 35.3 1.96 +7.2 4029.4 −83.2
SF + PPF-A 40.5 27000.0
SF + PPF-T 30.9 −23.7 4414.3 −83.7
SF + PPF-A-S 53.5 1.32 +32.1 35666.7 +32.1
SF + PPF-T-S 40.1 1.30 −1.1 5342.0 −80.2