Cite

Grässel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels. Mater Sci Technol. 1998;14(12):1213–7; https://doi.org/10.1179/mst.1998.14.12.1213 GrässelO FrommeyerG Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels Mater Sci Technol 1998 14 12 1213 7 https://doi.org/10.1179/mst.1998.14.12.1213 10.1179/mst.1998.14.12.1213 Search in Google Scholar

Yuan GW, Huang MX. Supper strong nanostructured TWIP steels for automotive applications. Prog Nat Sci Mat Int. 2014;24(1):50–5; https://doi.org/10.1016/j.pnsc.2014.01.004 YuanGW HuangMX Supper strong nanostructured TWIP steels for automotive applications Prog Nat Sci Mat Int 2014 24 1 50 5 https://doi.org/10.1016/j.pnsc.2014.01.004 10.1016/j.pnsc.2014.01.004 Search in Google Scholar

Palma-Elvira ED, Garnica-Gonzalez P, Pacheco-Cedeño JS, Cruz Rivera JJ, Ramos-Azpeitia M, Garay-Reyes CG, et al. Microstructural development and mechanical properties during hot rolling and annealing of an automotive steel combining TRIP/TWIP effects. J Alloys Compd. 2019;798:45–52; https://doi.org/10.1016/j.jallcom.2019.05.130 Palma-ElviraED Garnica-GonzalezP Pacheco-CedeñoJS Cruz RiveraJJ Ramos-AzpeitiaM Garay-ReyesCG Microstructural development and mechanical properties during hot rolling and annealing of an automotive steel combining TRIP/TWIP effects J Alloys Compd 2019 798 45 52 https://doi.org/10.1016/j.jallcom.2019.05.130 10.1016/j.jallcom.2019.05.130 Search in Google Scholar

Kozłowska A, Grajcar A, Janik A, Radwański K, Krupp U, Matus K, et al. Mechanical and thermal stability of retained austenite in plastically deformed bainite-based TRIP-aided medium-Mn steels. Arch Civ Mech Eng. 2021;21:3; https://doi.org/10.1007/s43452-021-00284-6 KozłowskaA GrajcarA JanikA RadwańskiK KruppU MatusK Mechanical and thermal stability of retained austenite in plastically deformed bainite-based TRIP-aided medium-Mn steels Arch Civ Mech Eng 2021 21 3 https://doi.org/10.1007/s43452-021-00284-6 10.1007/s43452-021-00284-6 Search in Google Scholar

Wang C, Cai W, Sun C, Li X, Qian L, Jiang J. Strain rate effects on mechanical behavior and microstructure evolution with the sequential strains of TWIP steel. Mater Sci Eng A. 2022;835:142673; https://doi.org/10.1016/j.msea.2022.142673 WangC CaiW SunC LiX QianL JiangJ Strain rate effects on mechanical behavior and microstructure evolution with the sequential strains of TWIP steel Mater Sci Eng A 2022 835 142673 https://doi.org/10.1016/j.msea.2022.142673 10.1016/j.msea.2022.142673 Search in Google Scholar

Grajcar A, Borek W. Thermo-mechanical processing of high-manganese austenitic TWIP-type steels. Arch Civ Mech Eng. 2008;8:29–38; https://doi.org/10.1016/S1644-9665(12)60119-8 GrajcarA BorekW Thermo-mechanical processing of high-manganese austenitic TWIP-type steels Arch Civ Mech Eng 2008 8 29 38 https://doi.org/10.1016/S1644-9665(12)60119-8 10.1016/S1644-9665(12)60119-8 Search in Google Scholar

Cai W, Wang C, Sun C, Qian L, Fu MW. Microstructure evolution and fracture behaviour of TWIP steel under dynamic loading. Mater Sci Eng. 2022;851:143657; https://doi.org/10.1016/j.msea.2022.143657 CaiW WangC SunC QianL FuMW Microstructure evolution and fracture behaviour of TWIP steel under dynamic loading Mater Sci Eng 2022 851 143657 https://doi.org/10.1016/j.msea.2022.143657 10.1016/j.msea.2022.143657 Search in Google Scholar

Barati Rizi MH, Ghiasabadi Farahani M, Aghaahmadi M, Kim JH, Karjalainen LP, Sahu P. Analysis of strain hardening behavior of a high-Mn TWIP steel using electron microscopy and cyclic stress relaxation. Acta Mater. 2022;240:118309; https://doi.org/10.1016/j.actamat.2022.118309 Barati RiziMH Ghiasabadi FarahaniM AghaahmadiM KimJH KarjalainenLP SahuP Analysis of strain hardening behavior of a high-Mn TWIP steel using electron microscopy and cyclic stress relaxation Acta Mater 2022 240 118309 https://doi.org/10.1016/j.actamat.2022.118309 10.1016/j.actamat.2022.118309 Search in Google Scholar

Jabłońska MB, Śmiglewicz A, Niewielski G. The effect of strain rate on the mechanical properties and microstructure of the high-Mn steel after dynamic deformation tests. Arch Metall Mater. 2015;60(2A):577–80; https://doi.org/10.1515/amm-2015-0176 JabłońskaMB ŚmiglewiczA NiewielskiG The effect of strain rate on the mechanical properties and microstructure of the high-Mn steel after dynamic deformation tests Arch Metall Mater 2015 60 2A 577 80 https://doi.org/10.1515/amm-2015-0176 10.1515/amm-2015-0176 Search in Google Scholar

Jabłońska MB, Kowalczyk K. Microstructural aspects of energy absorption of high manganese steels. Procedia Manuf. 2019;27:91–7; https://doi.org/10.1016/j.promfg.2018.12.049 JabłońskaMB KowalczykK Microstructural aspects of energy absorption of high manganese steels Procedia Manuf 2019 27 91 7 https://doi.org/10.1016/j.promfg.2018.12.049 10.1016/j.promfg.2018.12.049 Search in Google Scholar

Kozłowska A, Radwański K, Matus K, Samek L, Grajcar A. Mechanical stability of retained austenite in aluminum-containing medium-Mn steel deformed at different temperatures. Arch Civ Mech Eng. 2021;21(1): 324–38; https://doi.org/10.1007/s43452-021-00177-8 KozłowskaA RadwańskiK MatusK SamekL GrajcarA Mechanical stability of retained austenite in aluminum-containing medium-Mn steel deformed at different temperatures Arch Civ Mech Eng 2021 21 1 324 38 https://doi.org/10.1007/s43452-021-00177-8 10.1007/s43452-021-00177-8 Search in Google Scholar

Wiewiórowska S, Muskalski Z, Siemiński M. The analysis of “hot” drawing process of trip steel wires at different initial temperatures. Arch Metall Mater. 2016;61(4):1991–4; https://doi.org/10.1515/amm-2016-0321 WiewiórowskaS MuskalskiZ SiemińskiM The analysis of “hot” drawing process of trip steel wires at different initial temperatures Arch Metall Mater 2016 61 4 1991 4 https://doi.org/10.1515/amm-2016-0321 10.1515/amm-2016-0321 Search in Google Scholar

Pierce DT, Benzing JT, Jiménez JA, Hickel T, Bleskov I, Keum J, et al. The influence of temperature on the strain-hardening behavior of Fe-22/25/28Mn-3Al-3Si TRIP/TWIP steels. Materialia. 2022;22:101425; https://doi.org/10.1016/j.mtla.2022.101425 PierceDT BenzingJT JiménezJA HickelT BleskovI KeumJ The influence of temperature on the strain-hardening behavior of Fe-22/25/28Mn-3Al-3Si TRIP/TWIP steels Materialia 2022 22 101425 https://doi.org/10.1016/j.mtla.2022.101425 10.1016/j.mtla.2022.101425 Search in Google Scholar

Gronostajski Z, Niechajowicz A, Kuziak R, Krawczyk J, Polak S. The effect of the strain rate on the stress-strain curve and microstructure of AHSS. J Mater Process Technol. 2017;242:246–59; https://doi.org/10.1016/j.jmatprotec.2016.11.023 GronostajskiZ NiechajowiczA KuziakR KrawczykJ PolakS The effect of the strain rate on the stress-strain curve and microstructure of AHSS J Mater Process Technol 2017 242 246 59 https://doi.org/10.1016/j.jmatprotec.2016.11.023 10.1016/j.jmatprotec.2016.11.023 Search in Google Scholar

Madivala M, Bleck W. Strain rate dependent mechanical properties of TWIP steel. JOM. 2019;71(4):1291–302; https://doi.org/10.1007/s11837-018-3137-0 MadivalaM BleckW Strain rate dependent mechanical properties of TWIP steel JOM 2019 71 4 1291 302 https://doi.org/10.1007/s11837-018-3137-0 10.1007/s11837-018-3137-0 Search in Google Scholar

Soares GC, Vázquez-Fernández NI, Hokka M. Thermo-mechanical behavior of steels in tension studied with synchronized full-field deformation and temperature measurements. Exp Tech. 2021;45(5):627–43; https://doi.org/10.1007/s40799-020-00436-y SoaresGC Vázquez-FernándezNI HokkaM Thermo-mechanical behavior of steels in tension studied with synchronized full-field deformation and temperature measurements Exp Tech 2021 45 5 627 43 https://doi.org/10.1007/s40799-020-00436-y 10.1007/s40799-020-00436-y Search in Google Scholar

Mijangos D, Mejia I, Cabrera JM. Influence of microalloying additions (Nb, Ti, Ti/B, V and Mo) on the microstructure of TWIP steels. Metall Microstruct Anal. 2022;11(3):524–36; https://doi.org/10.1007/s13632-022-00871-w MijangosD MejiaI CabreraJM Influence of microalloying additions (Nb, Ti, Ti/B, V and Mo) on the microstructure of TWIP steels Metall Microstruct Anal 2022 11 3 524 36 https://doi.org/10.1007/s13632-022-00871-w 10.1007/s13632-022-00871-w Search in Google Scholar

Hamada A, Kömi J. Effect of microstructure on mechanical properties of a novel high-Mn TWIP stainless steel bearing vanadium. Mater Sci Eng A. 2018;718:301–4; https://doi.org/10.1016/j.msea.2018.01.132 HamadaA KömiJ Effect of microstructure on mechanical properties of a novel high-Mn TWIP stainless steel bearing vanadium Mater Sci Eng A 2018 718 301 4 https://doi.org/10.1016/j.msea.2018.01.132 10.1016/j.msea.2018.01.132 Search in Google Scholar

Bai Y, Jiao D, Li J, Yang Z. Effect of Nb content on the stacking fault energy, microstructure and mechanical properties of Fe-25Mn-9Al-8Ni-1C alloy. Mater Today Commun. 2022;31:103554; https://doi.org/10.1016/j.mtcomm.2022.103554 BaiY JiaoD LiJ YangZ Effect of Nb content on the stacking fault energy, microstructure and mechanical properties of Fe-25Mn-9Al-8Ni-1C alloy Mater Today Commun 2022 31 103554 https://doi.org/10.1016/j.mtcomm.2022.103554 10.1016/j.mtcomm.2022.103554 Search in Google Scholar

Li D, Feng Y, Song S, Liu Q, Bai Q, Wu G, et al. Influences of Nb-microalloying on microstructure and mechanical properties of Fe-25Mn-3Si-3Al TWIP steel. Mater Des. 2015;84:238–44; https://doi.org/10.1016/j.matdes.2015.06.092 LiD FengY SongS LiuQ BaiQ WuG Influences of Nb-microalloying on microstructure and mechanical properties of Fe-25Mn-3Si-3Al TWIP steel Mater Des 2015 84 238 44 https://doi.org/10.1016/j.matdes.2015.06.092 10.1016/j.matdes.2015.06.092 Search in Google Scholar

Chandan AK, Tripathy S, Sen B, Ghosh M, Ghosh Chowdhury S. Temperature dependent deformation behavior and stacking fault energy of Fe40Mn40Co10Cr10 alloy. Scr Mater. 2021;199:113891; https://doi.org/10.1016/j.scriptamat.2021.113891 ChandanAK TripathyS SenB GhoshM Ghosh ChowdhuryS Temperature dependent deformation behavior and stacking fault energy of Fe40Mn40Co10Cr10 alloy Scr Mater 2021 199 113891 https://doi.org/10.1016/j.scriptamat.2021.113891 10.1016/j.scriptamat.2021.113891 Search in Google Scholar

Lee JY, Hong JS, Kang SH, Lee YK. The effect of austenite grain size on deformation of Fe–17Mn steel. Mater Sci Eng A. 2021;809:140972; https://doi.org/10.1016/j.msea.2021.140972 LeeJY HongJS KangSH LeeYK The effect of austenite grain size on deformation of Fe–17Mn steel Mater Sci Eng A 2021 809 140972 https://doi.org/10.1016/j.msea.2021.140972 10.1016/j.msea.2021.140972 Search in Google Scholar

FLIR. FLIR T840TM QUICKLY MAKE CRITICAL DECISIONS. 2019. [Online]. Available: https://www.testequipmentdepot.com/flir/pdf/t840_datasheet.pdf. Accessed 14 Nov 2022. FLIR FLIR T840TM QUICKLY MAKE CRITICAL DECISIONS 2019 [Online]. Available: https://www.testequipmentdepot.com/flir/pdf/t840_datasheet.pdf. Accessed 14 Nov 2022. Search in Google Scholar

Wang YH, Jiang JH, Wanintrudal C, Zhou D, Smith LM, Yang LX. Whole field sheet-metal tensile test using digital image correlation. Exp Tech. 2010;34(2):54–9; https://doi.org/10.1111/j.1747-1567.2009.00483.x WangYH JiangJH WanintrudalC ZhouD SmithLM YangLX Whole field sheet-metal tensile test using digital image correlation Exp Tech 2010 34 2 54 9 https://doi.org/10.1111/j.1747-1567.2009.00483.x 10.1111/j.1747-1567.2009.00483.x Search in Google Scholar

eISSN:
2083-134X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties