Acceso abierto

2D and 3D numerical simulation of fatigue crack growth path and life predictions of a linear elastic


Cite

Al Laham S, Branch SI. Stress intensity factor and limit load handbook. Gloucester, Volume 3. UK: British Energy Generation Limited; 1998. Al LahamS BranchSI Stress intensity factor and limit load handbook 3 Gloucester, UK British Energy Generation Limited 1998 Search in Google Scholar

Tada H, Paris PC, Irwin GR, Tada H. The stress analysis of cracks handbook, Volume 130. New York TadaH ParisPC IrwinGR TadaH The stress analysis of cracks handbook 130 New York Search in Google Scholar

Sih, G.; Liebowitz, H. Mathematical Fundamentals. In Fracture, Academic Press New York: 1968; Vol. 2, pp. 67–190. SihG. LiebowitzH Mathematical Fundamentals In Fracture Academic Press New York 1968 2 67 190 Search in Google Scholar

Hellan K. Introduction to fracture mechanics. McGraw-Hill; New York, 1985. HellanK Introduction to fracture mechanics McGraw-Hill New York 1985 Search in Google Scholar

Barsom J, Rolfe S. Fracture and fatigue in structure: Application of fracture mechanics. Philadelphia, PA: American Society for Testing and Materials; 1999. BarsomJ RolfeS Fracture and fatigue in structure: Application of fracture mechanics Philadelphia, PA American Society for Testing and Materials 1999 10.1520/MNL41-3RD-EB Search in Google Scholar

Hasan, S.; Akhtar, N. Dugdale model for three equal collinear straight cracks: An analytical approach. Theoretical and Applied Fracture Mechanics 2015, 78, 40–50. HasanS. AkhtarN Dugdale model for three equal collinear straight cracks: An analytical approach Theoretical and Applied Fracture Mechanics 2015 78 40 50 10.1016/j.tafmec.2015.04.002 Search in Google Scholar

Hasan, S.; Akhtar, N. Mathematical model for three equal collinear straight cracks: A modified Dugdale approach. Strength, Fracture and Complexity 2015, 9, 211–232. HasanS. AkhtarN. Mathematical model for three equal collinear straight cracks: A modified Dugdale approach Strength, Fracture and Complexity 2015 9 211 232 10.3233/SFC-160189 Search in Google Scholar

Kumar S, Singh I, Mishra B, Singh A. New enrichments in XFEM to model dynamic crack response of 2-D elastic solids. Int J Impact Eng. 2016;87:198–211. KumarS SinghI MishraB SinghA New enrichments in XFEM to model dynamic crack response of 2-D elastic solids Int J Impact Eng 2016 87 198 211 10.1016/j.ijimpeng.2015.03.005 Search in Google Scholar

Pandey V, Singh I, Mishra B, Ahmad S, Rao AV, Kumar V. A new framework based on continuum damage mechanics and XFEM for high cycle fatigue crack growth: ASME Press; 2000. PandeyV SinghI MishraB AhmadS RaoAV KumarV A new framework based on continuum damage mechanics and XFEM for high cycle fatigue crack growth ASME Press 2000 Search in Google Scholar

Alshoaibi AM, Fageehi YA. 2D finite element simulation of mixed mode fatigue crack propagation for CTS specimen. J Mater Res Technol. 2020;9:7850–61. AlshoaibiAM FageehiYA 2D finite element simulation of mixed mode fatigue crack propagation for CTS specimen J Mater Res Technol 2020 9 7850 61 10.1016/j.jmrt.2020.04.083 Search in Google Scholar

Li X, Li H, Liu L, Liu Y, Ju M, Zhao J. Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method. Int J Rock Mech Min Sci. 2020;127:104219. LiX LiH LiuL LiuY JuM ZhaoJ Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method Int J Rock Mech Min Sci 2020 127 104219 10.1016/j.ijrmms.2020.104219 Search in Google Scholar

Leclerc W, Haddad H, Guessasma M. On the suitability of a discrete element method to simulate cracks initiation and propagation in heterogeneous media. Int J Solids Struct. 2017;108:98–114. LeclercW HaddadH GuessasmaM On the suitability of a discrete element method to simulate cracks initiation and propagation in heterogeneous media Int J Solids Struct 2017 108 98 114 10.1016/j.ijsolstr.2016.11.015 Search in Google Scholar

Shao Y, Duan Q, Qiu S. Adaptive consistent element-free Galerkin method for phase-field model of brittle fracture. Comput Mech. 2019;64:741–67. ShaoY DuanQ QiuS Adaptive consistent element-free Galerkin method for phase-field model of brittle fracture Comput Mech 2019 64 741 67 10.1007/s00466-019-01679-2 Search in Google Scholar

Kanth SA, Harmain G, Jameel A. Modeling of nonlinear crack growth in steel and aluminum alloys by the element free galerkin method. Mater Today Proc. 2018;5:18805–14. KanthSA HarmainG JameelA Modeling of nonlinear crack growth in steel and aluminum alloys by the element free galerkin method Mater Today Proc 2018 5 18805 14 10.1016/j.matpr.2018.06.227 Search in Google Scholar

Huynh HD, Nguyen MN, Cusatis G, Tanaka S, Bui TQ. A polygonal XFEM with new numerical integration for linear elastic fracture mechanics. Eng Fract Mech. 2019;213:241–63. HuynhHD NguyenMN CusatisG TanakaS BuiTQ A polygonal XFEM with new numerical integration for linear elastic fracture mechanics Eng Fract Mech 2019 213 241 63 10.1016/j.engfracmech.2019.04.002 Search in Google Scholar

Surendran M, Natarajan S, Palani G, Bordas SP. Linear smoothed extended finite element method for fatigue crack growth simulations. Eng Fract Mech. 2019;206:551–64. SurendranM NatarajanS PalaniG BordasSP Linear smoothed extended finite element method for fatigue crack growth simulations Eng Fract Mech 2019 206 551 64 10.1016/j.engfracmech.2018.11.011 Search in Google Scholar

Rozumek D, Marciniak Z, Lesiuk G, Correia J. Mixed mode I/II/III fatigue crack growth in S355 steel. Procedia Struct Integr. 2017;5:896–903. RozumekD MarciniakZ LesiukG CorreiaJ Mixed mode I/II/III fatigue crack growth in S355 steel Procedia Struct Integr 2017 5 896 903 10.1016/j.prostr.2017.07.125 Search in Google Scholar

Dekker R, van der Meer F, Maljaars J, Sluys L. A cohesive XFEM model for simulating fatigue crack growth under mixed-mode loading and overloading. Int J Numer Methods Eng. 2019;118:561–77. DekkerR van der MeerF MaljaarsJ SluysL A cohesive XFEM model for simulating fatigue crack growth under mixed-mode loading and overloading Int J Numer Methods Eng 2019 118 561 77 10.1002/nme.6026 Search in Google Scholar

Rezaei S, Wulfinghoff S, Reese S. Prediction of fracture and damage in micro/nano coating systems using cohesive zone elements. Int J Solids Struct. 2017;121:62–74. RezaeiS WulfinghoffS ReeseS Prediction of fracture and damage in micro/nano coating systems using cohesive zone elements Int J Solids Struct 2017 121 62 74 10.1016/j.ijsolstr.2017.05.016 Search in Google Scholar

Xu W, Wu X. Weight functions and strip-yield model analysis for three collinear cracks. Eng Fract Mech. 2012;85: 73–87. XuW WuX Weight functions and strip-yield model analysis for three collinear cracks Eng Fract Mech 2012 85 73 87 10.1016/j.engfracmech.2012.02.009 Search in Google Scholar

Zhang W, Tabiei A. An efficient implementation of phase field method with explicit time integration. J Appl Comput Mech. 2020;6:373–82. ZhangW TabieiA An efficient implementation of phase field method with explicit time integration J Appl Comput Mech 2020 6 373 82 Search in Google Scholar

Dirik H, Yalçinkaya T. Crack path and life prediction under mixed mode cyclic variable amplitude loading through XFEM. Int J Fatigue. 2018;114:34–50. DirikH YalçinkayaT Crack path and life prediction under mixed mode cyclic variable amplitude loading through XFEM Int J Fatigue 2018 114 34 50 10.1016/j.ijfatigue.2018.04.026 Search in Google Scholar

Demir O, Ayhan AO, İriç S. A new specimen for mixed mode-I/II fracture tests: Modeling, experiments and criteria development. Eng Fract Mech. 2017;178:457–76. DemirO AyhanAO İriçS A new specimen for mixed mode-I/II fracture tests: Modeling, experiments and criteria development Eng Fract Mech 2017 178 457 76 10.1016/j.engfracmech.2017.02.019 Search in Google Scholar

Zhang R, Guo R. Determination of crack tip stress intensity factors by singular Voronoi cell finite element model. Eng Fract Mech. 2018;197:206–16. ZhangR GuoR Determination of crack tip stress intensity factors by singular Voronoi cell finite element model Eng Fract Mech 2018 197 206 16 10.1016/j.engfracmech.2018.04.042 Search in Google Scholar

Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng. 1999;45:601–20. BelytschkoT BlackT Elastic crack growth in finite elements with minimal remeshing Int J Numer Methods Eng 1999 45 601 20 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S Search in Google Scholar

Bergara A, Dorado J, Martin-Meizoso A, Martínez-Esnaola J. Fatigue crack propagation in complex stress fields: Experiments and numerical simulations using the Extended Finite Element Method (XFEM). Int J Fatigue. 2017;103:112–21. BergaraA DoradoJ Martin-MeizosoA Martínez-EsnaolaJ Fatigue crack propagation in complex stress fields: Experiments and numerical simulations using the Extended Finite Element Method (XFEM) Int J Fatigue 2017 103 112 21 10.1016/j.ijfatigue.2017.05.026 Search in Google Scholar

Demir O, Ayhan AO, Sedat I, Lekesiz H. Evaluation of mixed mode-I/II criteria for fatigue crack propagation using experiments and modeling. Chinese J Aeronaut 2018;31:1525–34. DemirO AyhanAO SedatI LekesizH Evaluation of mixed mode-I/II criteria for fatigue crack propagation using experiments and modeling Chinese J Aeronaut 2018 31 1525 34 10.1016/j.cja.2018.05.009 Search in Google Scholar

Sajith S, Murthy K, Robi P. Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061-T6. Int J Fatigue. 2020;130:105285. SajithS MurthyK RobiP Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061-T6 Int J Fatigue 2020 130 105285 10.1016/j.ijfatigue.2019.105285 Search in Google Scholar

Alshoaibi AM. Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading. Struct Eng Mech. 2010;35:283–99. AlshoaibiAM Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading Struct Eng Mech 2010 35 283 99 10.12989/sem.2010.35.3.283 Search in Google Scholar

Alshoaibi AM. Comprehensive comparisons of two and three dimensional numerical estimation of stress intensity factors and crack propagation in linear elastic analysis. Int J Integr Eng. 2019;11:45–52. AlshoaibiAM Comprehensive comparisons of two and three dimensional numerical estimation of stress intensity factors and crack propagation in linear elastic analysis Int J Integr Eng 2019 11 45 52 10.30880/ijie.2019.11.06.006 Search in Google Scholar

Fageehi YA, Alshoaibi AM. Numerical simulation of mixed-mode fatigue crack growth for compact tension shear specimen. Adv Mater Sci Eng. 2020;1–14. https://doi.org/10.1155/2020/5426831 FageehiYA AlshoaibiAM Numerical simulation of mixed-mode fatigue crack growth for compact tension shear specimen Adv Mater Sci Eng 2020 1 14 https://doi.org/10.1155/2020/5426831 10.1155/2020/5426831 Search in Google Scholar

Chen H, Wang Q, Zeng W, Liu G, Sun J, He L, et al. Dynamic brittle crack propagation modeling using singular edge-based smoothed finite element method with local mesh rezoning. Eur J Mech A Solids 2019;76:208–23. ChenH WangQ ZengW LiuG SunJ HeL Dynamic brittle crack propagation modeling using singular edge-based smoothed finite element method with local mesh rezoning Eur J Mech A Solids 2019 76 208 23 10.1016/j.euromechsol.2019.04.010 Search in Google Scholar

Gomes G, Miranda AC. Analysis of crack growth problems using the object-oriented program bemcracker2D. Frattura ed Integrità Strutturale 2018;12:67–85. GomesG MirandaAC Analysis of crack growth problems using the object-oriented program bemcracker2D Frattura ed Integrità Strutturale 2018 12 67 85 10.3221/IGF-ESIS.45.06 Search in Google Scholar

Fageehi YA, Alshoaibi AM. Nonplanar crack growth simulation of multiple cracks using finite element method. Adv Mater Sci Eng. 2020; 1–12. FageehiYA AlshoaibiAM Nonplanar crack growth simulation of multiple cracks using finite element method Adv Mater Sci Eng 2020 1 12 10.1155/2020/8379695 Search in Google Scholar

Alshoaibi AM. Numerical modeling of crack growth under mixed-mode loading. Appl Sci. 2021;11:2975. AlshoaibiAM Numerical modeling of crack growth under mixed-mode loading Appl Sci 2021 11 2975 10.3390/app11072975 Search in Google Scholar

Paris P, Erdogan F. A critical analysis of crack propagation laws; J. Basic Eng. Dec 1963, 85(4): 528–53337. ParisP ErdoganF A critical analysis of crack propagation laws J. Basic Eng. Dec 1963 85 4 528 53337 10.1115/1.3656900 Search in Google Scholar

Coffin L. Cyclic deformation and fatigue of metals. Fatigue and Endurance of Metals [Russian translation], Moscow; 1963. 257–72. CoffinL Cyclic deformation and fatigue of metals Fatigue and Endurance of Metals [Russian translation] Moscow 1963 257 72 Search in Google Scholar

Wöhler A. Versuche zur Ermittlung der auf die Eisenbahnwagenachsen einwirkenden Kräfte und die Widerstandsfähigkeit der Wagen-Achsen. Zeitschrift für Bauwesen. 1860;10:583–614. WöhlerA Versuche zur Ermittlung der auf die Eisenbahnwagenachsen einwirkenden Kräfte und die Widerstandsfähigkeit der Wagen-Achsen Zeitschrift für Bauwesen 1860 10 583 614 Search in Google Scholar

Bjørheim F. Practical comparison of crack meshing in ANSYS mechanical APDL 19.2. Norway: University of Stavanger; 2019. BjørheimF Practical comparison of crack meshing in ANSYS mechanical APDL 19.2 Norway University of Stavanger 2019 Search in Google Scholar

Erdogan F, Sih G. On the crack extension in plates under plane loading and transverse shear. J Basic Eng. 1963;85:519–525. ErdoganF SihG On the crack extension in plates under plane loading and transverse shear J Basic Eng 1963 85 519 525 10.1115/1.3656897 Search in Google Scholar

Hussain M, Pu S, Underwood J. Strain energy release rate for a crack under combined mode I and mode II. In Proceedings of the Fracture analysis: Proceedings of the 1973 national symposium on fracture mechanics, Part II; West Conshohocken, PA, 1974. HussainM PuS UnderwoodJ Strain energy release rate for a crack under combined mode I and mode II In Proceedings of the Fracture analysis: Proceedings of the 1973 national symposium on fracture mechanics, Part II West Conshohocken, PA 1974 Search in Google Scholar

Nuismer R. An energy release rate criterion for mixed mode fracture. Int J Fract. 1975;11:245–50. NuismerR An energy release rate criterion for mixed mode fracture Int J Fract 1975 11 245 50 10.1007/BF00038891 Search in Google Scholar

Lee Y-L, Pan J, Hathaway R, Barkey M. Fatigue testing and analysis: Theory and practice, Volume 13. Burlington, Mass.: Butterworth-Heinemann, 2005. LeeY-L PanJ HathawayR BarkeyM Fatigue testing and analysis: Theory and practice 13 Burlington, Mass. Butterworth-Heinemann 2005 Search in Google Scholar

Irwin GR. Analysis of stresses and strains near the end of a crack transversing a plate. Trans ASME Ser E J Appl Mech. 1957;24:361–4. IrwinGR Analysis of stresses and strains near the end of a crack transversing a plate Trans ASME Ser E J Appl Mech 1957 24 361 4 10.1115/1.4011547 Search in Google Scholar

Bashiri AH, Alshoaibi AM. Adaptive finite element prediction of fatigue life and crack path in 2D structural components. Metals. 2020;10:1316. BashiriAH AlshoaibiAM Adaptive finite element prediction of fatigue life and crack path in 2D structural components Metals 2020 10 1316 10.3390/met10101316 Search in Google Scholar

Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech. 1968;35:379–86. RiceJR A path independent integral and the approximate analysis of strain concentration by notches and cracks J Appl Mech 1968 35 379 86 10.21236/AD0653716 Search in Google Scholar

Alshoaibi AM. Finite element simulation of fatigue life estimation and crack path prediction of two dimensional structures components. HKIE Trans. 2013;15:1–6. AlshoaibiAM Finite element simulation of fatigue life estimation and crack path prediction of two dimensional structures components HKIE Trans 2013 15 1 6 10.1080/1023697X.2008.10668103 Search in Google Scholar

Alshoaibi AM. An adaptive finite element framework for fatigue crack propagation under constant amplitude loading. Int J Appl Sci Eng. 2015;13:261–70. AlshoaibiAM An adaptive finite element framework for fatigue crack propagation under constant amplitude loading Int J Appl Sci Eng 2015 13 261 70 Search in Google Scholar

Alshoaibi AM. A two dimensional simulation of crack propagation using adaptive finite element analysis. J Comput Appl Mech. 2018;49:335. AlshoaibiAM A two dimensional simulation of crack propagation using adaptive finite element analysis J Comput Appl Mech 2018 49 335 Search in Google Scholar

Alshoaibi AM, Hadi M, Ariffin A. Two-dimensional numerical estimation of stress intensity factors and crack propagation in linear elastic analysis. Struct Durability Health Monit. 2007;3:15. AlshoaibiAM HadiM AriffinA Two-dimensional numerical estimation of stress intensity factors and crack propagation in linear elastic analysis Struct Durability Health Monit 2007 3 15 Search in Google Scholar

Knowles JK, Sternberg E. On a class of conservation laws in linearized and finite elastostatics. California Institute of Technology, Pasadena Division of Engineering and Applied Science; 1971. KnowlesJK SternbergE On a class of conservation laws in linearized and finite elastostatics California Institute of Technology, Pasadena Division of Engineering and Applied Science 1971 10.1007/BF00250778 Search in Google Scholar

Liu Y, Li Y, Xie WJ. Modeling of multiple crack propagation in 2-D elastic solids by the fast multipole boundary element method. Eng Fract Mech. 2017;172:1–16. LiuY LiY XieWJ Modeling of multiple crack propagation in 2-D elastic solids by the fast multipole boundary element method Eng Fract Mech 2017 172 1 16 10.1016/j.engfracmech.2017.01.010 Search in Google Scholar

Ingraffea AR, Grigoriu M. Probabilistic fracture mechanics: A validation of predictive capability. Cornell University Ithaca, NY, Department of Structural Engineering; 1990. IngraffeaAR GrigoriuM Probabilistic fracture mechanics: A validation of predictive capability Cornell University Ithaca, NY, Department of Structural Engineering 1990 Search in Google Scholar

Ma W, Liu G, Wang W. A coupled extended meshfree – Smoothed meshfree method for crack growth simulation. Theor Appl Fract Mech. 2020;107:102572. MaW LiuG WangW A coupled extended meshfree – Smoothed meshfree method for crack growth simulation Theor Appl Fract Mech 2020 107 102572 10.1016/j.tafmec.2020.102572 Search in Google Scholar

Bittencourt T, Wawrzynek P, Ingraffea A, Sousa J. Quasi-automatic simulation of crack propagation for 2D LEFM problems. Eng Fract Mech. 1996;55:321–34. BittencourtT WawrzynekP IngraffeaA SousaJ Quasi-automatic simulation of crack propagation for 2D LEFM problems Eng Fract Mech 1996 55 321 34 10.1016/0013-7944(95)00247-2 Search in Google Scholar

eISSN:
2083-134X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties