Acceso abierto

Characterization study of polyAMPS@BMA core-shell particles using two types of RAFT agents


Cite

The study and application of reversible addition-fragmentation chain transfer (RAFT) polymerization have been widely reported in the literature because of its high compatibility with numerous monomers, reaction conditions, and low polydispersity index. The effect of RAFT agents on the characteristics of the final product is greatly needed to be explored. Our present study aimed to compare the influence of two different types of RAFT agents on the characteristics of the water-soluble polymer (2-acrylamido-2-methylpropane sulfonic acid) (polyAMPS) and their polyAMPS@butyl methacrylate (BMA) core-shell particles. Different analytical techniques including scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used to ascertain the final morphological, structural, and thermal properties of the resultant products. It was found that RAFT agents have shown a clear influence on the final properties of the resultant polyAMPS and their core-shell particles such as particle size, shape, size distribution, and thermal behavior. This study confirms that RAFT agents can control the final properties of the polymers and their core-shell particles.

eISSN:
2083-134X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties