Acceso abierto

Existence, uniqueness weak solution for a dynamic Full von Karman System of thermoelasticity

   | 11 oct 2022

Cite

[1] Benabdallah.A, Lasiecka.I, Exponential decay rates for a full von Karman system of dynamic thermoelasticity. Journal of Differential Equation 160. 2000; 51-93.10.1006/jdeq.1999.3656 Search in Google Scholar

[2] Bilbao S. A family of conservative finite difference schemes for the dynamical von Karman plate equations. Numer Meth Partial Differ Equ. 2007;24/1:193-218.10.1002/num.20260 Search in Google Scholar

[3] H. Bresis, Analyse fonctionnelle, Théorie et application. Masson, Paris (1983). Search in Google Scholar

[4] Chueshov I, Lasiecka I. Von Karman evolution, well-posedness and long time dynamics. New York: Springer; 2010.10.1007/978-0-387-87712-9 Search in Google Scholar

[5] Ciarlet PG, Rabier R. Les Equations de von Karman. New York: Springer; 1980. (Lecture Notes in Mathematics; 826).10.1007/BFb0091528 Search in Google Scholar

[6] Deriaz.E, Perrier.V. Orthogonal Hemholtz decomposition in arbitrary dimension using divergence-free and curl-free wavelets. Appl. Comput. Harmoni. Anal. 26. 2009; 241-269.10.1016/j.acha.2008.06.001 Search in Google Scholar

[7] Favini.A, Horn.M.A, Lasiecka.I, Tataru.D, Global excistence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation, Differential Integral Equations 9 1996. 267-294.10.57262/die/1367603346 Search in Google Scholar

[8] Glowinski R, Pironneau O. Numerical methods for the first biharmonic equation and for the two dimensional stokes problem. SIAM Rev. 1979;21/2:167-212.10.1137/1021028 Search in Google Scholar

[9] Gubta MM, Manohar RP. Direct solution of biharmonic equation using non coupled approach. J Comput Phys. 1979;33/2:236-248.10.1016/0021-9991(79)90018-4 Search in Google Scholar

[10] Hamilton B, Bilbao S. On finite difference schemes for the 3-D wave equation using non-Cartesian grids. Proceedings of Stockholm Musical Acoustics Conference/Sound and Music Computing Conference 3-30 July-Aug 2013; Sweden: Stockholm; 2013. Search in Google Scholar

[11] Lions JL, Magenes E. Probl‘eme aux limites non homog‘enes et applications. Vol.1, Paris, Dunod: Gauthier- Villars; 1968. Search in Google Scholar

[12] Oudaani.J, Raissouli.M, El mouatasim.A, Structural acoustic problem and dynamic nonlinear plate equations. Applicable Analysis. 2020 DOI: 10.1080/00036811.2020.1839644.10.1080/00036811.2020.1839644 Search in Google Scholar

[13] Oudaani J. Numerical approach to the uniqueness solution of von Karman evolution. Int J Math Oper Res. 2018;13/4:450, 470.10.1504/IJMOR.2018.095485 Search in Google Scholar

[14] Oudaani J. Uniqueness solution of classical von Karman, Marguerre and von Karman equations. Int J Math Game Theory and Algebra. 2016;25/1:23-35. Search in Google Scholar

[15] Pereira DC DC, Raposo CA, Avila AJ. Numerical solution and exponential decay to von Karman system with frictional damping. Int J Math Information Sci. 2014;8/4:1575-1582.10.12785/amis/080411 Search in Google Scholar

[16] Roy M. Endlich, Direct Separation of Two-Dimensional Vector Fields into It-rotational and Solenoidal Parts. J of Math Analysis and Application 33, 328-334 (1971).10.1016/0022-247X(71)90058-8 Search in Google Scholar

[17] Sedenko.V.I, On uniqueness of the generalized solutions of initial boundary value problem for Marguerre- Vlasov nonlinear oscillations of the shallow shells, Russian Izv. NorthCaucasus Reg. Ser. Natural Sci. (1994). Search in Google Scholar

eISSN:
2351-8227
Idioma:
Inglés