Acceso abierto

Evidence of amorphous Ca-phosphate precipitate caused by bio mineralisation in 4-5th CE lime plasters of the previously submerged east coastal monument of Salvankuppam


Cite

Amoroso, G.G., Fassina, V., Lewin, SZ. (1983). Stone decay and conservation: atmospheric pollution, cleaning, consolidation and protection. Amsterdam: Elsevier. Search in Google Scholar

Atkins, W.R.G. (1923). The Phosphate Content of Fresh and Salt Waters in its Relationship to the growth of the Algal Plankton. Journal of the Marine Biological Associa-tion of the United Kingdom, 13(1), 119–150.10.1017/S002531540001095X Search in Google Scholar

Camaiti, M., Borselli, G., and Matteoli, U. (1988). Prodoƫ consalidanti impiegati nelle operazioni di restauro. Edilizia, 10(2), 438 – 445. Search in Google Scholar

Camuffo, D. (1995). Physical weathering of stones. Science of the Total Environment, 167, 1-14. DOI: 10.1016/0048-9697(95)04565-I10.1016/0048-9697(95)04565-I Search in Google Scholar

Castanier, S., Maurin, A., & Bianchi, A. (1984). Participation bactérienne à la production du carbonate. Comptes Rendus de l’Académie des Sciences, 299(19), 1333–1336. Search in Google Scholar

Connolly, J., Kaufman, M., Rothman, A., et al. (2013). Construction of two ureolytic model organisms for the study of microbially induced calcium carbonate precipitation. Journal of Microbiological Methods, 94(3), 290-299. DOI: 10.1016/j.mimet.2013.06.02810.1016/j.mimet.2013.06.02823835134 Search in Google Scholar

Cosmidis, J., Benzerara, K., Guyot, F., Skouri-Panet, F., Duprat E., Férard C., Guigner J.-M., Babonneau F., & Coelho C. (2015). Calcium-Phosphate Biomineralization Induced by Alkaline Phosphatase Activity in Escherichia coli: Localization, Kinetics, and Potential Signatures in the Fossil Record, Frontiers in Earth Science, 3, 84. DOI: 10.3389/feart.2015.0008410.3389/feart.2015.00084 Search in Google Scholar

Destainville, A., Champion, E., Bernache-Assollant, D., & Laborde, E. (2003). Synthesis, Characterization and Thermal Behavior of Apatitic Tricalcium Phosphate. Materials Chemistry and Physics, 80, 269-277. DOI: 10.1016/S0254-0584(02)00466-210.1016/S0254-0584(02)00466-2 Search in Google Scholar

Eanes, E.D., Termine, J.D., & Nylen, M.U. (1973). An electron microscopic study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite. Calcified Tissue Research, 12, 143–158. DOI: 10.1007/BF0201373010.1007/BF020137304710793 Search in Google Scholar

Eisa M.Y., Al Dabbas, M., & Abdulla, F.H. (2015). Quantitative identification of phosphate using X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy. Inter-national Journal of Current Microbiology and Applied Science, 4(1), 270-283. Search in Google Scholar

Elert, K., Sánchez, R.M.G., Benavides-Reyes, C., & Linares Ordóñez, F. (2019). Influence of animal glue on mineralogy, strength and weathering resistance of lime plasters. Construction and Building Materials, 226, 625-635. DOI: 10.1016/j.conbuildmat.2019.07.26110.1016/j.conbuildmat.2019.07.261 Search in Google Scholar

Franzoni, E., Graziani, G., Sassoni, E., Bacilieri, G., Griffa, M., & Lura, P. (2015). Solvent-based ethyl silicate for stone consolidation: influence of the application technique on penetration depth, efficacy and pore occlusion. Materials and Structures, 48, 3503-3515. DOI: 10.1617/s11527-014-0417-110.1617/s11527-014-0417-1 Search in Google Scholar

Fishman, M.R., Giglio, K., Fay, D. et al. (2018). Physiological and genetic characterization of calcium phosphate precipitation by Pseudomonas species. Scientific Reports, 8, 10156. DOI: 10.1038/s41598-018-28525-410.1038/s41598-018-28525-4603391429976945 Search in Google Scholar

Gadd, G.M., Burford, E.P., & Fomina, M. (2003). Biogeochemical activities of microorganisms in mineral transformations: Consequences for metal and nutrient mobility. Journal of Microbiology and Biotechnology, 13, 323-331. Search in Google Scholar

Han, J.K., Song, H-Y., Saito, F., & Lee, B-T. (2006). Synthesis of high purity nano-sized hydroxyapatite powder by microwave- hydrothermal method. Materials Chemistry and Physics, 99(2-3), 235-239. DOI: 10.1016/j. matchemphys.2005.10.01710.1016/j.matchemphys.2005.10.017 Search in Google Scholar

Hammes, F., Boon, N., de Villiers, J., Verstraete, W., & Siciliano, S.D. (2003). Strain-specific ureolytic microbial calcium carbonate precipitation. Applied and Environmental Microbiology, 69(8), 4901-4909. DOI: 10.1128/aem.69.8.4901-4909.200310.1128/AEM.69.8.4901-4909.200316913912902285 Search in Google Scholar

Jawaid, S., Ahmed, K., & Bhutto, M.A. (2018). Bio Concrete: An overview. International Journal of Biology and Biotechnology, 15(4), 801-813. Search in Google Scholar

Kanth, A.P., & Singh, M.R. (2019). Spectroscopic and chromatographic investigation of the wall painted surface of an 18th century Falian Temple, New Delhi. Vibra-tional spectroscopy, 104, 102947. DOI: 10.1016/j.vib-spec.2019.10294710.1016/j.vibspec.2019.102947 Search in Google Scholar

Koutsopoulos, S. (2002). Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. Journal of Biomedical Materials Research, 62(4), 600-612.10.1002/jbm.1028012221709 Search in Google Scholar

Kumar, S., Vinodh., & Singh., M.R. (2019). Salt Weathering of 7th Century CE Granite Monument of Shore Temple, Mahabalipuram-Scientific Investigation and Conserva-tion Strategy. Heritage, 2(1), 230-253. DOI: 10.3390/heritage201001710.3390/heritage2010017 Search in Google Scholar

Li, W., Chen, W.-S., Zhou, P.-P., Cao, L., & Yu, L.-J. (2012). Influence of initial pH on the precipitation and crystal morphology of calcium carbonate induced by microbial carbonic anhydrase. Colloids and Surfaces B: Biointerfaces, 102, 281–287. DOI: 10.1016/j.colsurĩ.2012.08.04210.1016/j.colsurfb.2012.08.042 Search in Google Scholar

Lowenstam, H.A., & Weiner, S. (1989). On biomineralization. Oxford University Press on demand. DOI: 10.1093/oso/9780195049770.001.000110.1093/oso/9780195049770.001.0001 Search in Google Scholar

May, E. (2001). Novel approaches to conserve our european heritage: bioremediation for building restoration of the urban stone heritage in european states. Bio-brush research monograph: EVK4-CT, 2001-00055, 2002-2005. https://cordis.europa.eu/project/id/EVK4-CT-2001-00055 Search in Google Scholar

Mobasherpour, I., Heshajin, M.S., Kozemzadeh, A., & Zakeri. M. (2007). Synthesis of nanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys and Compounds, 430, 330-333.10.1016/j.jallcom.2006.05.018 Search in Google Scholar

Molina, L., Ramos., C., Duque, E., Ronchel, M.C., García., J.M., Wyke, L., & Ramos., J.L. (2000). Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental condi-tions. Soil Biology and Biochemistry, 32(3), 315-321. DOI: 10.1016/S0038-0717(99)00156-X10.1016/S0038-0717(99)00156-X Search in Google Scholar

Mpanga, I.K., Dapaah, H.K., Geistlinger, J., Ludewig, U., & Neumann, G. (2018). Soil Type-Dependent Interactions of P-Solubilizing Microorganisms with Organic and Inorganic Fertilizers Mediate Plant Growth Promotion in Tomato. Agronomy, 8, 213. DOI: doi.org/10.3390/agronomy810021310.3390/agronomy8100213 Search in Google Scholar

Mpanga., I.K., Nkebiwe, P.M., Kuhlmann, M., Cozzolino, V., Piccolo, A., Geistlinger, J., Berger, N., Ludewig, U., & Neumann, G. (2019). The Form of N Supply Determines Plant Growth Promotion by P-Solubilizing Microorganisms in Maize. Microorganisms, 7, 38. DOI: 10.3390/microorganisms702003810.3390/microorganisms7020038640669030699936 Search in Google Scholar

Papayianni, I., & Stefanidou, M. (2001). The Evolution of Porosity in Lime Based Mortars. Proceedings of the 8th Euroseminar on Microscopy Applied to Building Materials, 4–7 September 2001, pp. 451-457, Athens, Greece. Search in Google Scholar

Pedro, L.G., & de Brito, J. (2008). Quantifying environmental effects on cement rendered facades: A comparison between different degradation indicators. Building and Environment, 43(11), 1818-1828. DOI: doi. org/10.1016/j.buildenv.2007.10.02210.1016/j.buildenv.2007.10.022 Search in Google Scholar

Rainey, P.B. (1999). Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environmental Microbiology, 1(3), 243-257. DOI: 10.1046/j.1462-2920.1999.00040.x 10.1046/j.1462-2920.1999.00040.x11207743 Search in Google Scholar

Rajendran, C.P., Rajendran, K., Machado, T., Satyamurthy, T., Aravazhi, P., & Jaiswal M. (2006). Evidence of ancient sea surges at the mamallapuram coast of India and implications for previous Indian Ocean tsunami events. Current Science, 91(9), 1242-1247. Search in Google Scholar

Ravi, R., Thirumalini, S., & Taher, N. (2018) Analysis of ancient lime plasters – Reason behind longevity of the Monument Charminar, India a study, Journal of Building Engineering, 20, 30-41. DOI: doi.org/10.1016/j. jobe.2018.04.01010.1016/j.jobe.2018.04.010 Search in Google Scholar

Raynaud, S., Champion, E., Bernache-Assollant, D., & Thomas, P. (2002). Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials, 23(4), 1065-1072. DOI: 10.1016/s0142-9612(01)00218-610.1016/S0142-9612(01)00218-611791909 Search in Google Scholar

Rivadeneyra, M.A., Marơn-Algarra, A., Sánchez-Román, M., Sánchez-Navas, A., & Marơn-Ramos, J.D. (2010). Amorphous Ca-phosphate precursors for Ca-carbonate biominerals mediated by Chromohalobacter marismortui. The ISME Journal, 4(7), 922-932. DOI: 10.1038/ismej.2010.1710.1038/ismej.2010.1720182524 Search in Google Scholar

Nogueira, R., Pinto, A.P.F., & Gomes, A. (2018). Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses. Cement and Concrete Composites, 89, 192-204. DOI: 10.1016/j.cemconcomp.2018.03.00510.1016/j.cemconcomp.2018.03.005 Search in Google Scholar

Rodriguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, B.K., & Gonzalez-Muñoz, M.T. (2003). Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Applied and Environmental Microbiology, 69(4), 2182-2193. DOI: 10.1128/aem.69.4.2182-2193.200310.1128/AEM.69.4.2182-2193.200315478712676699 Search in Google Scholar

Sathyabhama, B., Hema, A., Smriti, H., & Mohandas, K.P. (2011). Salvankuppam Coastal temple, excavation and application of soil micromorphology. Current Science, 100(7), 1071-1075. Search in Google Scholar

Sickels, L.-B. (1982). Organics vs. synthetics: Their use as additives in mortars. Mortars, Cement and Grouts used in the Conservation of Historical Buildings Symposium, 3–6 November 1981, Rome: Iccrom. Search in Google Scholar

Singh, M.R., & Vinodh Kumar, S. (2019). Architechtural features and characterization of 16th century Indian Monument Farah Bagh, Ahmed Nagar, India. International Journal of Architectural Heritage, 14(9), 1398-1411. DOI: 10.1080/15583058.2019.161052410.1080/15583058.2019.1610524 Search in Google Scholar

Sigel, A., Sigel, H., & Sigel, R.K.O. (2008) Biomineralization: From nature to application, Volume 4. Metal Ions in Life Sciences, John Wiley & Sons.10.1002/9780470986325 Search in Google Scholar

Sundaresh, A.S. Gaur, Tripathi, S., & Vora, K.H. (2004). Underwater investigations of Mahabalipuram, Tamil Nadu. Current Science, 86(9), 1231-1237. Search in Google Scholar

Tao, J. (2013). Chapter Twenty-Two - FTIR and Raman Studies of Structure and Bonding in Mineral and Organic–Mineral Composites. Methods in Enzymology, 532, 533-556. DOI: 10.1016/B978-0-12-416617-2.00022-910.1016/B978-0-12-416617-2.00022-924188781 Search in Google Scholar

Turner, R.J., Renshaw, J.C., & Hamilton. A. (2017). Biogenic Hydroxyapatite: A New Material for the Preservation and Restoration of the Built Environment. ACS Applied Materials & Interfaces, 9(37), 31401-31410. DOI: 10.1021/acsami.7b0792710.1021/acsami.7b0792728737897 Search in Google Scholar

Zhao, P., Jackson, M.D., Zhang, Y., Li, G., Monteiro, P.J.M., & Yang, L. (2015). Material characteristics of ancient Chinese lime binder and experimental reproductions with organic admixtures. Construction and Building Materials, 84, 477-488. DOI: doi.org/10.1016/j.conbuildmat.2015.03.06510.1016/j.conbuildmat.2015.03.065 Search in Google Scholar

eISSN:
1899-8526
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Geosciences, Geophysics, other