1. bookVolumen 50 (2019): Edición 1-4 (December 2019)
Detalles de la revista
License
Formato
Revista
eISSN
1899-8526
Primera edición
05 Feb 2007
Calendario de la edición
1 tiempo por año
Idiomas
Inglés
Acceso abierto

Synthesis and characterization of cadmium chlorapatite Cd5(PO4)3Cl

Publicado en línea: 03 Apr 2020
Volumen & Edición: Volumen 50 (2019) - Edición 1-4 (December 2019)
Páginas: 3 - 12
Recibido: 25 Sep 2018
Aceptado: 06 Jun 2019
Detalles de la revista
License
Formato
Revista
eISSN
1899-8526
Primera edición
05 Feb 2007
Calendario de la edición
1 tiempo por año
Idiomas
Inglés

Chen, Y-Y., Yu, S-H., Jiang, H-F., Yao, Q-Z., Fu, S-Q., & Zhou, G-T. (2018). Performance and mechanism of simultaneous removal of Cd(II) and Congo red from aqueous solution by hierarchical vaterite spherulites, Applied Surface Science, 444, 224-234. DOI:10.1016/j.apsusc.2018.03.081.10.1016/j.apsusc.2018.03.081Search in Google Scholar

Corami, A., Mignardi, S., & Ferrini, V. (2008). Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite. Journal of Colloid and Interface Science, 317(2), 402-408. DOI: 10.1016/j.jcis.2007.09.075.10.1016/j.jcis.2007.09.075Search in Google Scholar

Deng, J. Q., Liu, Y. G., Liu, S. B., Zeng, G., Tan, X., Huang, B., Tang, X., Wang, S., Hua, Q., & Yan, Z. (2017). Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science, 506, 355-364. DOI: 10.1016/j.jcis.2017.07.069.10.1016/j.jcis.2017.07.069Search in Google Scholar

Drouet, C. (2015). A comprehensive guide to experimental and predicted thermodynamic properties of phosphate apatite minerals in view of applicative purposes. The Journal of Chemical Thermodynamics, 81, 143-159. DOI: 10.1016/j.jct.2014.09.012.10.1016/j.jct.2014.09.012Search in Google Scholar

Eighmy, T.T., Crannel, B.S., Butler, L.G., Cartledge, F.K., Emery, E.F., Oblas, D., Krzanowski, J.E., Eusden, J.D., Shaw, J.E.L. & Francis, C.A. (1997). Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environmental Science & Technology, 31, 3330-3338. DOI: 10.1021/es970407c.10.1021/es970407cSearch in Google Scholar

Flis, J., Manecki, M., & Bajda, T. (2011). Solubility of pyromorphite Pb5(PO4)3Cl− mimetite Pb5(AsO4)3Cl solid solution series. Geochimica et Cosmochimica Acta, 75(7), 1858-1868. DOI: 10.1016/j.gca.2011.01.021.10.1016/j.gca.2011.01.021Search in Google Scholar

Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407-418. DOI: 10.1016/j.jenvman.2010.11.011.10.1016/j.jenvman.2010.11.011Search in Google Scholar

Handke, M., Mozgawa, W., & Nocuń, M. (1994). Specific features of the IR spectra of silicate glasses. Journal of Molecular Structure, 325, 129-136. DOI:10.1016/0022-2860(94)80028-6.10.1016/0022-2860(94)80028-6Search in Google Scholar

Hara, T., Kanai, S., Mori, K., Mizugaki, T., Ebitani, K., Jitsukawa, K., & Kaneda, K. (2006). Highly Efficient C-C Bond-Forming Reactions in Aqueous Media Catalyzed by Monomeric Vanadate Species in an Apatite Framework. The Journal of Organic Chemistry, 71, 7455-7462. DOI: 10.1021/jo0614745.10.1021/jo061474516958542Search in Google Scholar

Huang, P.M., & Gobran, G.R. (2005). Biogeochemistry of Trace Elements in the Rhizosphere, Elsevier Science, Oxford. DOI: 10.1016/B978-0-444-51997-9.X5000-4.10.1016/B978-0-444-51997-9.X5000-4Search in Google Scholar

Jeanjean, J., McGrellis, S., Rouchaud, J.C., Fedoroff, M., Rondeau, S., Perocheau, S., & Dubis, A. (1996). A Crystallographic Study of the Sorption of Cadmium on Calcium Hydroxyapatites: Incidence of Cationic Vacancies. Journal of Solid State Chemistry, 126, 195-201. DOI: 10.1006/jssc.1996.0329.10.1006/jssc.1996.0329Search in Google Scholar

Klee, W.E., & Engel, G. (1970). I.R. Spectra of the phosphate ions in various apatites. Journal Inorganic & Nuclear Chemistry, 32, 1837-1843. DOI: 10.1016/0022-1902(70)80590-5.10.1016/0022-1902(70)80590-5Search in Google Scholar

Lee, H.H., Owens, V.N., Park, S., Kim, J., & Hong, C.O. (2018). Adsorption and precipitation of cadmium affected by chemical form and addition rate of phosphate in soils having different levels of cadmium. Chemosphere, 206, 369-375. DOI: 10.1016/j.chemosphere.2018.04.176.10.1016/j.chemosphere.2018.04.176Search in Google Scholar

Lenoble, V., Deluchat, V., Serpaud, B., & Bollinger, J.C. (2003). Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta, 61(3), 267-276. DOI: 10.1016/S0039-9140(03)00274-1.10.1016/S0039-9140(03)00274-1Search in Google Scholar

Ma, Q.Y., Traina, S.J., & Logan, T.J. (1993). In situ lead immobilization by apatite. Environmental Science & Technology, 27, 1803-1810. DOI: 10.1021/es00046a007.10.1021/es00046a007Search in Google Scholar

Matusik, J., Bajda, T., & Manecki, M. (2012). Aqueous cadmium removal by hydroxylapatite and fluoroapatite. Geology, Geophysics & Environment, 38(4), 427-438. DOI: 10.7494/geol.2012.38.4.427.10.7494/geol.2012.38.4.427Search in Google Scholar

Miretzky, P., & Fernandez Cirelli, A. (2008). Phosphates for Pb immobilization in soils. A review. Environmental Chemistry Letters, 6, 121-133. DOI: 10.1007/978-1-4020-9654-9_16.10.1007/978-1-4020-9654-9_16Search in Google Scholar

Robie, R.A., Hemingway, B.S., & Fisher, J.R. (1978). Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures, U.S. Geological Survey Bulletin 1452, Washington.Search in Google Scholar

Shirkhanloo, H., Ghazaghi, M., & Mousavi, H.Z. (2016). Cadmium determination in human biological samples based on trioctylmethyl ammonium thiosalicylate as a task-specific ionic liquid by dispersive liquid-liquid microextraction method, Journal of Molecular Liquids, 218, 478-483. DOI: 10.1016/j.molliq.2016.02.035.10.1016/j.molliq.2016.02.035Search in Google Scholar

Sternlieb, M.P., Brown, H.M., Schaeffer Jr., C.D., & Yoder, C.H. (2009). The synthesis of apatites with an organophosphate and in nonaqueous media. Polyhedron, 28, 729-732. DOI: 10.1016/j.poly.2008.12.039.10.1016/j.poly.2008.12.039Search in Google Scholar

Viipsi, K., Sjöberg, S., Tõnsuaadu, K., & Shchukarev, A. (2013). Hydroxy- and fluorapatite as sorbents in Cd(II)–Zn(II) multi-component solutions in the absence/presence of EDTA. Journal of Hazardous Materials, 252-253, 91-98. DOI: 10.1016/j.jhazmat.2013.02.034.10.1016/j.jhazmat.2013.02.03423500794Search in Google Scholar

Wang, Q., Yang, L., Jia., F., Li, Y., & Song, S. (2018). Removal of Cd (II) from water by using nano-scale molybdenum disulphide sheets as adsorbents. Journal of Molecular Liquids, 263, 526-533. DOI: 10.1016/j.molliq.2018.04.149.10.1016/j.molliq.2018.04.149Search in Google Scholar

Wong, C.-W., Barford, J.P., Chen, G., & McKay, G. (2014). Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin. Journal of Environmental Chemical Engineering, 2, 698-707. DOI: 10.1016/j.jece.2013.11.010.10.1016/j.jece.2013.11.010Search in Google Scholar

Wopenka, B., & Pasteris, J.D. (2005). A mineralogical perspective on the apatite in bone. Materials Science and Engineering: C, 25, 131-143. DOI: 10.1016/j.msec.2005.01.008.10.1016/j.msec.2005.01.008Search in Google Scholar

Zhu, X.-H., Li, J., Luo, J.-H., Jin, Y., & Zheng, D. (2017). Removal of cadmium (II) from aqueous solution by a new adsorbent of fluor-hydroxyapatite composites. Journal of the Taiwan Institute of Chemical Engineers, 70, 200-208. DOI: 10.1016/j.jtice.2016.10.049.10.1016/j.jtice.2016.10.049Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo