Acceso abierto

Dissolution of mimetite Pb5(AsO4)3Cl in malic acid solutions


Cite

Allison, J.D., Brown, D.S., & Novo-Gradac, K.J. (1991). MINTEQA2 /PRODEFA2, a geochemical assessment model for environmental systems: version 3.0 user’s manual, EPA/600/3-91/021, Athens, GA: US Environmental Protection Agency, Environmental Research Laboratory.Search in Google Scholar

Bajda, T. (2010). Solubility of mimetite Pb5(AsO4)3Cl at 5-55°C. Environmental Chemistry, 7, 268-278. DOI: 10.1071/EN10021.10.1071/EN10021Search in Google Scholar

Bajda, T. (2011). Dissolution of mimetite Pb5(AsO4)3Cl in low-molecular-weight organic acids and EDTA. Chemosphere, 83, 1493-1501. DOI: 10.1016/j.chemosphere.2011.01.056.10.1016/j.chemosphere.2011.01.056Search in Google Scholar

Bajda, T., Szmit, E., & Manecki, M. (2007). Removal of As(V) from solutions by precipitations of mimetite Pb5(AsO4)3Cl. In Pawłowski L., Dudzińska M. & Pawłowski A. (Eds.), Environmental Engineering (119-124). New York, Singapore: Taylor & Francis.Search in Google Scholar

Ball, J.W., & Nordstrom, D.K. (1991). WATEQ4F - User’s manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters. US Geological Survey Open-File Report, 90-129.10.3133/ofr90129Search in Google Scholar

Bhumbla, D. K., & Keefer R. F. (1994). Arsenic mobilization and bioavailability in soils. In J. O. Nriagu (Ed.) Arsenic in the Environment, Part I: Cycling and Characterization (pp. 62-66). New York: Wiley.Search in Google Scholar

Clara, M., & Magalhaes, F. (2002). Arsenic. An environmental problem limited by solubility. Pure Applied Chemistry, 74(10), 1843-1850. DOI: 10.1351/pac200274101843.10.1351/pac200274101843Search in Google Scholar

Debela, F., Arocena, J.M., Thring, R.W., & Whitcombe, T. (2010). Organic acid-induced release of lead from pyromorhite and its relevance to reclamation of Pb-contaminated soils, Chemospere, 80, 450-456.10.1016/j.chemosphere.2010.04.025Search in Google Scholar

Inegbenebor, A.I., Thomas, J.H., & Williams, P.A. (1989). The chemical stability of mimetite and distribution coefficients for pyromorphite-mimetite solid-solutions. Mineralogical Magazine, 53, 363-371. DOI: 10.1180/minmag.1989.053.371.12.10.1180/minmag.1989.053.371.12Search in Google Scholar

Jones, D.L. (1998). Organic acids in the rhizosphere - a critical review. Plant and Soil, 205, 25-44. DOI: 10.1023/A:1004356007312.10.1023/A:1004356007312Search in Google Scholar

Khurana, S.C., & Gupta, C.M. (1973). Cathodic action of lead malate complexes at the dropping mercury electrode. Australian Journal of Chemistry, 26, 971-975.10.1071/CH9730971Search in Google Scholar

Lenoble, V., Deluchat, V., Serpaud, B., & Bollinger, J.C. (2003). Arsenite oxidation and arsenate determination by the molybdenum blue method. Talanta, 61, 267-276. DOI: 10.1016/S0039-9140(03)00274-1.10.1016/S0039-9140(03)00274-1Search in Google Scholar

Magalhaes, M.C.F., & Silva, M.C.M. (2003). Stability of lead arsenates. Monatshefte für Chemie, 134, 735-743. DOI 10.1007/s00706-002-0581-9.10.1007/s00706-002-0581-9Search in Google Scholar

Manecki, M., & Maurice, P.A. (2008). Siderophore promoted dissolution of pyromorphite. Soil Science, 173, 821-830.10.1097/SS.0b013e31818e8968Search in Google Scholar

Marini, L., & Accornero, M. (2007). Prediction of the thermodynamic properties of metal-arsenate and metalarsenite aqueous complexes to high temperatures and pressures and some geological consequences. Environmental Geology, 52, 1343-1363. DOI: 10.1007/s00254-006-0578-5.10.1007/s00254-006-0578-5Search in Google Scholar

Matschullat, J. (2000). Arsenic in the geosphere - a review. Science of the Total Environment, 249, 297. DOI:10.1016/S0048-9697(99)00524-010.1016/S0048-9697(99)00524-0Search in Google Scholar

Miretzky, P., & Fernandez-Cirelli A. (2008). Phosphates for Pb immobilization in soils: a review. Environmental Chemistry Letters, 6, 121-133. DOI: 10.1007/s10311-007-0133-y.10.1007/s10311-007-0133-ySearch in Google Scholar

Parkhurst, D.L. (1995). User’s guide to PHREEQC - a computer program for speciation, reaction-path, advectivetransport and inverse geochemical calculations. US Geological Survey Water resources Investigation report, 95-4227.Search in Google Scholar

Pasero, M., Kampf, A. R., Ferraris, C., Pekov, I. V., Rakovan, J., & White, T.J. (2010). Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163-179. DOI: 10.1127/0935-1221/2010/0022-2022.10.1127/0935-1221/2010/0022-2022Search in Google Scholar

Perrin, D. D. (1965). Dissociation Constants of Organic Bases in Aqueous Solution. London: Buttereorths, Supplement 1972.Search in Google Scholar

Serjeant, E. P., & Dempsey, B. (1979). Ionization Constants of Organic Acids in Aqueous Solution. Oxford: Pergamon, Oxford.Search in Google Scholar

Smith, R.M., & Martell, A.E. (1976). Critical stability constants. 4. Inorganic Complexes. Plenum Press.10.1007/978-1-4757-5506-0Search in Google Scholar

Twidwell, L. G, Plessas, K. O., & Comba, P. G. (1994). Removal of arsenic from wastewaters and stabilization of arsenic bearing waste solids - Summary Of Experimental Studies, Journal of Hazardous Materials, 36, 69-80.10.1016/0304-3894(93)E0054-6Search in Google Scholar

Welch, S. A., Taunton, A. E., & Banfield, J. F. (2002). Effect of Microorganisms and Microbial Metabolites on Apatite Dissolution, Geomicrobiology Journal, 19, 343-367. DOI: 10.1080/01490450290098414. 10.1080/01490450290098414Search in Google Scholar

eISSN:
1899-8526
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Geosciences, Geophysics, other