Acceso abierto

Continuous Monitoring of the Mining Activities, Restoration Vegetation Status and Solar Farm Growth in Coal Mine Region Using Remote Sensing Data


Cite

Farjana, S.H., N. Huda, M.A. Parvez Mahmud, and R. Saidur., 2019 A review on the impact of mining and mineral processing industries through life cycle assessment, Journal of Cleaner Production, Vol. 231, 1200-1217. DOI: https://doi.org/10.1016/j.jclepro.2019.05.264.Search in Google Scholar

Tost, M., M. Hitch, V. Chandurkar, P. Moser, and S. Feiel., 2018 The state of environmental sustainability considerations in mining, Journal of Cleaner Production, Vol. 182, 969-977. DOI: https://doi.org/10.1016/j.jclepro.2018.02.051.Search in Google Scholar

Norgate, T. and N. Haque., 2010 Energy and greenhouse gas impacts of mining and mineral processing operations, Journal of Cleaner Production, Vol. 18, No. 3, 266-274. DOI: https://doi.org/10.1016/j.jclepro.2009.09.020.Search in Google Scholar

Hilson, G., and V. Nayee., 2002 Environmental management system implementation in the mining industry: a key to achieving cleaner production, International Journal of Mineral Processing, Vol. 64, No.1, 19-41. DOI: https://doi.org/10.1016/S0301-7516(01)00071-0Search in Google Scholar

Hilson, G., 2003 Defining “cleaner production” and “pollution prevention” in the mining context, Minerals Engineering, Vol. 16, No. 4, 305–321. DOI: https://doi.org/10.1016/S0892-6875(03)00012-8.Search in Google Scholar

Islam, K., R. Yokoi., M. Motoshita., and S. Murakami., 2022 Ecological footprint accounting of mining areas and metal production of the world, Resources, Conservation and Recycling, Vol. 183, 106384. DOI: https://doi.org/10.1016/j.resconrec.2022.106384.Search in Google Scholar

Watari, T., K. Nansai., and K. Nakajima, 2021 Major metals demand, supply, and environmental impacts to 2100: A critical review, Resources, Conservation and Recycling, Vol. 164, 105107. DOI: https://doi.org/10.1016/j.resconrec.2020.105107.Search in Google Scholar

Werner, T.T., G.M. Mudd., A.M. Schipper., M.A.J. Huijbregts., L. Taneja., and S.A. Northey., 2020 Global-scale remote sensing of mine areas and analysis of factors explaining their extent, Global Environmental Change, Vol. 60, 102007. DOI: https://doi.org/10.1016/j.gloenvcha.2019.102007.Search in Google Scholar

Li, Q., J. Guo., F. Wang., and Z. Song., 2021 Monitoring the Characteristics of Ecological Cumulative Effect Due to Mining Disturbance Utilizing Remote Sensing, Remote Sensing, Vol. 13, No. 24, 5034. DOI: https://doi.org/10.3390/rs13245034Search in Google Scholar

Nascimento, F.S., M. Gastauer., P.W.M. Souza-Filho., W.R. Nascimento., D.C. Santos., M.F. Costa., 2020 Land Cover Changes in Open-Cast Mining Complexes Based on High-Resolution Remote Sensing Data, Remote Sensing, Vol. 12, No. 4, 611. DOI: https://doi.org/10.3390/rs12040611Search in Google Scholar

Padmanaban, R., A.K. Bhowmik., and P. Cabral., 2017 A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area, ISPRS International Journal of Geo-Information, Vol. 6, No.12, 401. DOI: https://doi.org/10.3390/ijgi6120401Search in Google Scholar

Chen, W., X. Li., H. He., and L. Wang., 2018 A Review of Fine-Scale Land Use and Land Cover Classification in Open-Pit Mining Areas by Remote Sensing Techniques, Remote Sensing, Vol.10, No.1, 15. DOI: https://doi.org/10.3390/rs10010015Search in Google Scholar

Townsend, P.A., D.P. Helmers., C.C. Kingdon., B.E. McNeil., K.M. de Beurs., and K.N. Eshleman., 2009 Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series, Remote Sensing of Environment, Vol. 113, No. 1, 62-72. DOI: https://doi.org/10.1016/j.rse.2008.08.012.Search in Google Scholar

Zhang, Z., G. He., M. Wang., Z. Wang., T. Long., and Y. Peng., 2015 Detecting Decadal Land Cover Changes in Mining Regions based on Satellite Remotely Sensed Imagery: A Case Study of the Stone Mining Area in Luoyuan County, SE China, Photogrammetric Engineering & Remote Sensing, (2015), Vol. 81, No. 9, 745-751. DOI: https://doi.org/10.14358/PERS.81.9.745.Search in Google Scholar

Guan, C., B. Zhang., J. Li., and J. Zhao., 2017 Temporal and spatial changes of land use and landscape in a coal mining area in Xilingol grassland, IOP Conference Series: Earth and Environmental Science, Vol.52, 12052. DOI: https://doi.org/10.1088/1742-6596/52/1/012052.Search in Google Scholar

Alkan, M., M. Oruc., Y. Yildirim., D.Z. Seker., and K. Jacobsen., 2013 Monitoring Spatial and Temporal Land Use/Cover Changes; a Case Study in Western Black Sea Region of Turkey,Journal of the Indian Society of Remote Sensing, Vol. 41, No.3, 587-596. DOI: 10.1007/s12524-012-0227-2.Search in Google Scholar

Zhao, H., Y. Ma., F. Chen., J. Liu., L. Jiang., W. Yao., and J. Yang., 2018 Monitoring Quarry Area with Landsat Long Time-Series for Socioeconomic Study, Remote Sensing, Vol.10, No.4, 517. DOI: https://doi.org/10.3390/rs10040517Search in Google Scholar

Dorren, L.K.A., B. Maier., and A.C. Seijmonsbergen., 2003 Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification, Forest Ecology and Management, Vol. 183, No.1, 31-46. DOI: https://doi.org/10.1016/S0378-1127(03)00113-0.Search in Google Scholar

Hansen, M.C., P. Potapov., R. Moore., M. Hancher., S. Turubanova., A. Tyukavina., D. Thau., S. Stehman., S. Goetz., T. Loveland., A. Kommareddy., A. Egorov., L. Chini., C.O. Justice., and J. Townshend., 2013 High-Resolution Global Maps of 21st-Century Forest Cover Change, Science (New York, N.Y.), Vol. 342, 850-853 DOI: 10.1126/science.1244693.Search in Google Scholar

Kennedy, R.E., W.B. Cohen., and T.A. Schroeder., 2007 Trajectory-based change detection for automated characterization of forest disturbance dynamics, Remote Sensing of Environment, Vol. 110, No.3, 370-386 DOI: https://doi.org/10.1016/j.rse.2007.03.010.Search in Google Scholar

Li, J., L.P. Jiao., Y.Y. Shen., and Q.L. Liu., 2016 Land use and cover change in coal mining area by IFZ and NDVI, Vol. 41, 2822-2829. DOI: 10.13225/j.cnki.jccs.2016.0223.Search in Google Scholar

Li, J., Yan, X., Yang, Z., Dong, J., Deng, X., 2019 Comparative analysis of long-term trends on fraction of vegetation coverage in grassland mining area, Bulletin of Surveying and Mapping, Vol. 8, 130–134. DOI: 10.13474/j.cnki.11-2246.2019.0267.Search in Google Scholar

Xiao, W., X. Deng., T. He., and W. Chen., 2020 Mapping Annual Land Disturbance and Reclamation in a Surface Coal Mining Region Using Google Earth Engine and the LandTrendr Algorithm: A Case Study of the Shengli Coalfield in Inner Mongolia, China, Remote Sensing, (2020), Vol. 12, No. 10, 1612. DOI: https://doi.org/10.3390/rs12101612Search in Google Scholar

He, T., W. Xiao., Y. Zhao., W. Chen., X. Deng., and J. Zhang., 2021 Continues monitoring of subsidence water in mining area from the eastern plain in China from 1986 to 2018 using Landsat imagery and Google Earth Engine, Journal of Cleaner Production, Vol. 279, 123610. DOI: https://doi.org/10.1016/j.jclepro.2020.123610.Search in Google Scholar

Bao, N.-s., L.-x. Wu., S.-j. Liu., and N. Li., 2016 Scale parameter optimization through high-resolution imagery to support mine rehabilitated vegetation classification,Ecological Engineering, Vol. 97, 130–137. DOI: https://doi.org/10.1016/j.ecoleng.2016.06.117.Search in Google Scholar

Wanat, N., E. Joussein., M. Soubrand., and J.F. Lenain., 2014 Arsenic (As), antimony (Sb), and lead (Pb) availability from Au-mine Technosols: a case study of transfer to natural vegetation cover in temperate climates, Environ Geochem Health, Vol. 36, No. 4, 783–795. DOI: 10.1007/s10653-014-9596-5.Search in Google Scholar

Gorelick, N., M. Hancher., M. Dixon., S. Ilyushchenko., D. Thau., and R. Moore., 2017 Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sensing of Environment, (2017), Vol. 202, 18–27. DOI: https://doi.org/10.1016/j.rse.2017.06.031.Search in Google Scholar

Yi, Z., M. Liu., X. Liu., Y. Wang., L. Wu., Z. Wang., and L. Zhu., 2021 Long-term Landsat monitoring of mining subsidence based on spatiotemporal variations in soil moisture: A case study of Shanxi Province, China, International Journal of Applied Earth Observation and Geoinformation, Vol. 102, 102447. DOI: https://doi.org/10.1016/j.jag.2021.102447.Search in Google Scholar

Dlamini, L.Z.D. and S. Xulu., 2019 Monitoring Mining Disturbance and Restoration over RBM Site in South Africa Using LandTrendr Algorithm and Landsat Data, Sustainability, Vol. 11, No. 24, 6916.Search in Google Scholar

Zhang, M., T. He., G. Li., W. Xiao., H. Song., D. Lu., and C. Wu., 2021 Continuous Detection of Surface-Mining Footprint in Copper Mine Using Google Earth Engine, Remote Sensing, Vol. 13, No. 21, 4273. DOI: https://doi.org/10.3390/rs13214273Search in Google Scholar

Li, J., Z. Jiang., H. Miao., J. Liang., Z. Yang., Y. Zhang., and T. Ma., 2022 Identification of cultivated land change trajectory and analysis of its process characteristics using time-series Landsat images: A study in the overlapping areas of crop and mineral production in Yanzhou City, China, Science of The Total Environment, Vol. 806, 150318. DOI: https://doi.org/10.1016/j.scitotenv.2021.150318.Search in Google Scholar

Pericak, A.A., C.J. Thomas., D.A. Kroodsma., M.F. Wasson., M.R.V. Ross., N.E. Clinton., D.J. Campagna., Y. Franklin., E.S. Bernhardt., and J.F. Amos., 2018 Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine, PLOS ONE, Vol. 13, No. 7. DOI: 10.1371/journal.pone.0197758.Search in Google Scholar

Firozjaei, M.K., A. Sedighi., H.K. Firozjaei., M. Kiavarz., M. Homaee., J.J. Arsanjani., M. Makki., B. Naimi., S.K. Alavipanah., 2021 A historical and future impact assessment of mining activities on surface biophysical characteristics change: A remote sensing-based approach, Ecological Indicators, Vol. 122, 107264. DOI: https://doi.org/10.1016/j.ecolind.2020.107264.Search in Google Scholar

Xulu, S., P.T. Phungula., N. Mbatha., and I. Moyo., 2021 Multi-Year Mapping of Disturbance and Reclamation Patterns over Tronox’s Hillendale Mine, South Africa with DBEST and Google Earth Engine, Land, Vol. 10, No. 7, 760 DOI: https://doi.org/10.3390/land10070760Search in Google Scholar

Tucker, C.J., 1979 Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 1979. Vol. 8, No. 2,127-150. DOI: https://doi.org/10.1016/0034-4257(79)90013-0.Search in Google Scholar

Kennedy, R.E., Z. Yang., N. Gorelick., J. Braaten., L. Cavalcante., W.B. Cohen., and S. Healey., 2018 Implementation of the LandTrendr Algorithm on Google Earth Engine, Remote Sensing, Vol. 10, No. 5, 691. DOI: https://doi.org/10.3390/rs10050691Search in Google Scholar

de Jong, S.M., Y. Shen., J. de Vries., G. Bijnaar., B. van Maanen., P. Augustinus., and P. Verweij., 2021 Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm, International Journal of Applied Earth Observation and Geoinformation, Vol. 97, 102293. DOI: https://doi.org/10.1016/j.jag.2020.102293.Search in Google Scholar

Kennedy, R.E., Z. Yang., and W.B. Cohen., 2010 Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms, Remote Sensing of Environment, Vol. 114, No. 12, 2897-2910 DOI: https://doi.org/10.1016/j.rse.2010.07.008.Search in Google Scholar

Zhu, L., X. Liu., L. Wu., Y. Tang., and Y. Meng., 2019 Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery, Remote Sensing, Vol. 11, No. 10, 1234. DOI: https://doi.org/10.3390/rs11101234Search in Google Scholar

Yang, Y., P.D. Erskine., A.M. Lechner., D. Mulligan., S. Zhang., and Z. Wang., 2018 Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm, Journal of Cleaner Production, Vol. 178, 353–362. DOI: https://doi.org/10.1016/j.jclepro.2018.01.050.Search in Google Scholar

Breiman, L., 2001 Random Forests, Machine Learning, (2001), 45(1), 5-32. DOI: 10.1023/A:1010933404324.Search in Google Scholar

Congalton, R., and K. Green., 2019 Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition, DOI: 10.1201/9780429052729.Search in Google Scholar

Rodriguez-Galiano, V.F., B. Ghimire., J. Rogan., M. Chica-Olmo., and J.P. Rigol-Sanchez., 2012 An assessment of the effectiveness of a random forest classifier for land-cover classification, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 67, 93–104. DOI:https://doi.org/10.1016/j.isprsjprs.2011.11.002.Search in Google Scholar

Lange, M., H. Feilhauer., I. Kühn., and D. Doktor., 2022 Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series, Remote Sensing of Environment, Vol. 277, 112888. DOI: https://doi.org/10.1016/j.rse.2022.112888.Search in Google Scholar

Yu, X., K. Zhang., and Y. Zhang., 2022 Land use classification of open-pit mine based on multi-scale segmentation and random forest model, PLOS ONE, Vol. 17, No. 2, 263870. DOI: 10.1371/journal.pone.0263870.Search in Google Scholar

eISSN:
2247-8590
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences