This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Armendáriz, J., & Matalon, M. (2001). Evaporation and Combustion of Thin Films of Liquid Fuels. Journal of Fluid Mechanics, 435, 351–376. https://doi.org/10.1017/S002211200100413XSearch in Google Scholar
Palazzi, E., & Fabiano, B. (2012). Analytical Modelling of Hydrocarbon Pool Fires: Conservative Evaluation of Flame Temperature and Thermal Power. Process Safety and Environmental Protection, 90 (2), 121–128. https://doi.org/10.1016/j.psep.2011.06.009Search in Google Scholar
Palazzi, E., Caviglione, C., Reverberi, A. P., & Fabiano, B. (2017). A Short-Cut Analytical Model of Hydrocarbon Pool Fire of Different Geometries, with Enhanced View Factor Evaluation. Process Safety and Environmental Protection, 110, 89–101. https://doi.org/10.1016/j.psep.2017.08.021Search in Google Scholar
Joulain, P. (1998). The Behavior of Pool Fires: State of the Art and New Insights. Symposium (International) on Combustion, 27 (2), 2691–2706. https://doi.org/10.1016/S0082-0784(98)80125-2Search in Google Scholar
Junjunan, S. F., Chetehouna, K., Cablé, A., Abdlgwad, A., Oger, A., & Bura, R. O. (2022). Study of heptane pool fire in well-confined military vehicle engine compartment. In Proceedings of CONV-22: Int. Symp. on Convective Heat and Mass Transfer. 5–10 June 2022, Turkey, Begel House Inc. https://doi.org/10.1615/ICHMT.2022.CONV22.200Search in Google Scholar
Chan Kim, S., Lee, K. Y., & Hamins, A. (2019). Energy Balance in Medium-Scale Methanol, Ethanol, and Acetone Pool Fires. Fire Safety Journal, 107, 44–53. https://doi.org/10.1016/j.firesaf.2019.01.004Search in Google Scholar
Sahu, D., Jain, S., Gupta, A., & Kumar, S. (2019). Experimental Studies on Different Liquid Pool Fires inside the Compartment. Fire Safety Journal, 109, 102858. https://doi.org/10.1016/j.firesaf.2019.102858Search in Google Scholar
Tian, X., Liu, C., Zhong, M., & Shi, C. (2020). Experimental Study and Theoretical Analysis on Influencing Factors of Burning Rate of Methanol Pool Fire. Fuel, 269, 117467. https://doi.org/10.1016/j.fuel.2020.117467Search in Google Scholar
Pathak, A., Norrefeldt, V., & Pschirer, M. (2021). Validation of a Simulation Tool for an Environmentally Friendly Aircraft Cargo Fire Protection System. Aerospace, 8 (2), 35. https://doi.org/10.3390/aerospace8020035Search in Google Scholar
Tao, Z., Yang, W., Sun, Z., Chen, M., Wang, J., Yang, R., & Zhang, H. (2022). Experimental Study of Oil Pool Shape and Environment Pressure on the Wall Fire Behavior in an Airplane Cargo Compartment. International Journal of Thermal Sciences, 174, 107440. https://doi.org/10.1016/j.ijthermalsci.2021.107440Search in Google Scholar
Tuovinen, H., & McNamee, M. (2000). Incorporation of Detailed Chemistry in CFD Modelling of Compartment Fires. ISFEH, Lake Windermere.Search in Google Scholar
Hyde, S. M., & Moss, J. B. (2003). Modelling CO Production in Vitiated Compartment Fires. Fire Safety Science, 7, 395–406.Search in Google Scholar
Brohez, S., Saladino, D., & Perelli, M. (2022). Experimental and Numerical Study of Heptane Pool Fire. Chemical Engineering Transactions, 91, 223–228. https://doi.org/10.3303/CET2291038Search in Google Scholar
Kumar, A., Kumar, R., & Ansari, A.A. (2022). Experimental and Numerical Simulation Studies of Liquefied Petroleum Gas Fire in a Full–Scale Compartment. Process Safety Progress, 41 (1), 195–206. https://doi.org/10.1002/prs.12292Search in Google Scholar
Li, J., Beji, T., Brohez, S., & Merci, B. (2021). Experimental and Numerical Study of Pool Fire Dynamics in an Air-Tight Compartment Focusing on Pressure Variation. Fire Safety Journal, 120, 103128. https://doi.org/10.1016/j.firesaf.2020.103128Search in Google Scholar
Pertamina. (2021). Product-IFM: Pertamax, Pertamina. Available at: https://onesolution.pertamina.com/Product/Download?filename=20210806090201atc_Pertamax%20Spesifikasi.pdfSearch in Google Scholar
Yeoh, G. H., & Yuen, K. K. (2009). Computational Fluid Dynamics in Fire Engineering: Theory, Modelling and Practice. Butterworth-Heinemann, 545.Search in Google Scholar
Karlsson, B., & Quintiere, J. G. (2022). Enclosure Fire Dynamics. (2nd ed.). CRC Press.Search in Google Scholar
McGrattan, K. B., McDermott, R. J., Weinschenk, C. G., & Forney, G. (2013). Fire Dynamics Simulator, Technical Reference Guide. (6th ed.). NIST.Search in Google Scholar
Deardorff, J. W. (1980). Stratocumulus-Capped Mixed Layers Derived from a Three-Dimensional Model. Boundary-Layer Meteorology, 18 (4), 495–527. https://doi.org/10.1007/BF00119502Search in Google Scholar
Smagorinsky, J. (1963). General Circulation Experiments with the Primitive Equations: I. The Basic Experiment. Monthly Weather Review, 91 (3), 99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2Search in Google Scholar
Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A Dynamic Subgrid‐ Scale Eddy Viscosity Model. Physics of Fluids A: Fluid Dynamics, 3 (7), 1760–1765. https://doi.org/10.1063/1.857955Search in Google Scholar
Babrauskas, V. (1983). Estimating Large Pool Fire Burning Rates. Fire Technology, 19 (4), 251–261. https://doi.org/10.1007/BF02380810Search in Google Scholar