This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Delaey, J., Dubruel, P., & Van Vlierberghe, S. (2020). Shape-Memory Polymers for Biomedical Applications. Adv Funct Mater., 30, 1909047. https://doi.org/10.1002/ADFM.201909047Search in Google Scholar
Vidakis, N., Petousis, M., Velidakis, E., Liebscher, M., & Tzounis, L. (2020). Three-Dimensional Printed Antimicrobial Objects of Polylactic Acid (PLA)-Silver Nanoparticle Nanocomposite Filaments Produced by an In-Situ Reduction Reactive Melt Mixing Process. Biomimetics, 5, 42. https://doi.org/10.3390/BIOMIMETICS5030042Search in Google Scholar
Holman, H., Kavarana, M.N., & Rajab, T.K.v (2021). Smart Materials in Cardiovascular Implants: Shape Memory Alloys and Shape Memory Polymers. Artif. Organs, 45, 454–463. https://doi.org/10.1111/AOR.13851Search in Google Scholar
Luo, L., Zhang, F., Wang, L., Liu, Y., & Leng, J. (2024). Recent Advances in Shape Memory Polymers: Multifunctional Materials, Multiscale Structures, and Applications. Adv Funct Mater., 34, 2312036. https://doi.org/10.1002/ADFM.202312036Search in Google Scholar
Iorio, L., Quadrini, F., Santo, L., Circi, C., Cavallini, E., & Carmine Pellegrini, R. (2024). Shape Memory Polymer Composite Hinges for Solar Sails. Advances in Space Research, 74, 3201–3215. https://doi.org/10.1016/J.ASR.2024.07.010Search in Google Scholar
Wang, X., He, Y., Liu, Y., & Leng, J. (2022). Advances in Shape Memory Polymers: Remote Actuation, Multi-Stimuli Control, 4D Printing and Prospective Applications. Materials Science and Engineering: R: Reports, 151, 100702. https://doi.org/10.1016/J.MSER.2022.100702.Search in Google Scholar
Hassan, H., Hallez, H., Thielemans, W., & Vandeginste, V. (2024). A Review of Electro-Active Shape Memory Polymer Composites: Materials Engineering Strategies for Shape Memory Enhancement. Eur Polym J., 208, 112861. https://doi.org/10.1016/J.EURPOLYMJ.2024.112861Search in Google Scholar
Yun, G., Tang, S.Y., Sun, S., Yuan, D., Zhao, Q., Deng, L., … & Li, W. (2019). Liquid Metal-Filled Magnetorheological Elastomer with Positive Piezoconductivity. Nature Communications, 10 (1), 1–9. https://doi.org/10.1038/s41467-019-09325-4Search in Google Scholar
Vitola, V., Bite, I., Apsite, I., Zolotarjovs, A., & Biswas, A. (2021). CuS/polyurethane Composite Appropriate for 4D Printing. Journal of Polymer Research, 28, 1–6. https://doi.org/10.1007/S10965-020-02375-Z/TABLES/1Search in Google Scholar
Xia, Y., He, Y., Zhang, F., Liu, Y., & Leng, J. (2021). A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Advanced Materials, 33, 2000713. https://doi.org/10.1002/ADMA.202000713Search in Google Scholar
Wang, L., Zhang, F., Liu, Y., & Leng, J. (2021). Shape Memory Polymer Fibers: Materials, Structures, and Applications. Advanced Fiber Materials, 4 (1), 5–23. https://doi.org/10.1007/S42765-021-00073-ZSearch in Google Scholar
Ma, S., Jiang, Z., Wang, M., Zhang, L., Liang, Y., Zhang, Z., Ren L, & Ren L. (2021). 4D printing of PLA/PCL Shape Memory Composites with Controllable Sequential Deformation. Biodes Manuf., 4, 867–878. https://doi.org/10.1007/S42242-021-00151-6/FIGURES/12Search in Google Scholar
Margoy, D., Gouzman, I., Grossman, E., Bolker, A., Eliaz, N., & Verker, R. (2021). Epoxy-Based Shape Memory Composite for Space Applications. Acta Astronaut, 178, 908–919. https://doi.org/10.1016/J.ACTAASTRO.2020.08.026Search in Google Scholar
Kong, D., Li, J., Guo, A., & Xiao, X. (2021). High Temperature Electromagnetic Shielding Shape Memory Polymer Composite. Chemical Engineering Journal, 408, 127365. https://doi.org/10.1016/J.CEJ.2020.127365Search in Google Scholar
Pilate, F., Toncheva, A., Dubois, P., & Raquez, J. M. (2016). Shape-Memory Polymers for Multiple Applications in the Materials World. Eur Polym J., 80, 268–294. https://doi.org/10.1016/J.EURPOLYMJ.2016.05.004Search in Google Scholar
Rahmatabadi, D., Aberoumand, M., Soltanmohammadi, K., Soleyman, E., Ghasemi, I., Baniassadi, M., … & Baghani, M. (2022). A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structures. Polymers, 14, 5446. https://doi.org/10.3390/POLYM14245446Search in Google Scholar
Zhao, T., Yu, R., Li, X., Cheng, B., Zhang, Y., Yang, X., … & Huang, W. (2018). 4D Printing of Shape Memory Polyurethane via Stereolithography. Eur Polym J., 101, 120–126. https://doi.org/10.1016/J.EURPOLYMJ.2018.02.021Search in Google Scholar
Ramezani, M., & Monroe, M.B.B. (2022). Biostable Segmented Thermoplastic Polyurethane Shape Memory Polymers for Smart Biomedical Applications. ACS Appl Polym Mater., 4, 1956–1965. https://doi.org/10.1021/ACSAPM.1C01808/ASSET/IMAGES/LARGE/AP1C01808_0010.JPEGSearch in Google Scholar
Biswas, A., Apsite, I., Rosenfeldt, S., Bite, I., Vitola, V., & Ionov, L. (2024). Modular Photoorigami-Based 4D Manufacturing of Vascular Junction Elements. J Mater Chem. B, 12, 5405–5417. https://doi.org/10.1039/D4TB00236ASearch in Google Scholar
Jia, H., Gu, S.Y., & Chang, K. (2018). 3D Printed Self-Expandable Vascular Stents from Biodegradable Shape Memory Polymer. Advances in Polymer Technology, 37, 3222–3228. https://doi.org/10.1002/ADV.22091Search in Google Scholar
Wang, L., Ma, J., Guo, T., Zhang, F., Dong, A., Zhang, S., … & Leng, J. (2023). Control of Surface Wrinkles on Shape Memory PLA/PPDO Micro-nanofibers and Their Applications in Drug Release and Anti-scarring. Advanced Fiber Materials, 5, 632–649. https://doi.org/10.1007/S42765-022-00249-1/FIGURES/7Search in Google Scholar
Molina, B.G., Ocón, G., Silva, F.M., Iribarren, J. I., Armelin, E., & Alemán C. (2023). Thermally-Induced Shape Memory Behavior of Polylactic Acid/Polycaprolactone Blends. Eur Polym J., 196, 112230. https://doi.org/10.1016/J.EURPOLYMJ.2023.112230Search in Google Scholar
Yang, C.S., Wu, H.C., Sun, J.S., Hsiao, H.M., & Wang, T.W. (2013). Thermo-Induced Shape-Memory PEG-PCL Copolymer as a Dual-Drug-Eluting Biodegradable Stent. ACS Appl Mater Interfaces, 5, 10985–10994. https://doi.org/10.1021/AM4032295/SUPPL_FILE/AM4032295_SI_001.PDFSearch in Google Scholar
Lv, H., Tang, D., Sun, Z., Gao, J., Yang, X., Jia, S., & Peng, J. (2020). Electrospun PCL-Based Polyurethane/HA Microfibers as Drug Carrier of Dexamethasone with Enhanced Biodegradability and Shape Memory Performances. Colloid Polym Sci., 298, 103–111. https://doi.org/10.1007/S00396-019-04568-5/FIGURES/11Search in Google Scholar
Herath, M., Epaarachchi, J., Islam, M., Fang, L., & Leng, J. (2020). Light Activated Shape Memory Polymers and Composites: A Review. Eur Polym J., 136, 109912. https://doi.org/10.1016/J.EURPOLYMJ.2020.109912Search in Google Scholar
Khurana, K., & Jaggi, N. (2021). Localized Surface Plasmonic Properties of Au and Ag Nanoparticles for Sensors: A Review. Plasmonics, 16 (4), 981–99. https://doi.org/10.1007/S11468-021-01381-1Search in Google Scholar
Cui, X., Ruan, Q., Zhuo, X., Xia, X., Hu, J., Fu, R., … & Xu, H. (2023). Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev., 123, 6891–952. https://doi.org/10.1021/ACS.CHEMREV.3C00159/ASSET/IMAGES/LARGE/CR3C00159_0029.JPEGSearch in Google Scholar
Stoychev, G., Kirillova, A., & Ionov, L. (2019). Light-Responsive Shape-Changing Polymers. Adv Opt Mater., 7, 1900067. https://doi.org/10.1002/ADOM.201900067Search in Google Scholar