Cite

Cohen, L. E., Spiro, D. J., & Viboud, C. (2022). Projecting the SARS-CoV-2 Transition from Pandemicity to Endemicity: Epidemiological and Immunological Considerations. PLOS Pathogens, 18 (6), e1010591. doi: 10.1371/journal.ppat.1010591 Search in Google Scholar

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., … & Cao, B. (2020). Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet, 395 (10223), 497–506. doi: 10.1016/s0140-6736(20)30183-5 Search in Google Scholar

Liu, J., Liao, X., Qian, S., Yuan, J., Wang, F., Liu, Y., …. & Zhang, Z. (2020). Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, Shenzhen, China, 2020. Emerging Infectious Diseases, 26 (6). doi: 10.3201/eid2606.200239 Search in Google Scholar

Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., … & Yuen, K.-Y. (2020). A Familial Cluster of Pneumonia Associated with the 2019 Novel Coronavirus Indicating Person-to-Person Transmission: A Study of a Family Cluster. The Lancet, 395 (10223), 514–523. doi: 10.1016/s0140-6736(20)30154-9 Search in Google Scholar

Chaudhuri, S., Basu, S., Kabi, P., Unni, V. R., & Saha, A. (2020). Modeling the Role of Respiratory Droplets in Covid-19 Type Pandemics. Physics of Fluids, 32 (6). doi: 10.1063/5.0015984 Search in Google Scholar

Nishiura, H., Oshitani, H., Kobayashi, T., Saito, T., Sunagawa, T., Matsui, T., … & Suzuki, M. (2020). Closed Environments Facilitate Secondary Transmission of Coronavirus Disease 2019 (COVID-19). medRxiv. doi: 10.1101/2020.02.28.20029272 Search in Google Scholar

Asadi, S., Bouvier, N., Wexler, A. S., & Ristenpart, W. D. (2020). The Coronavirus Pandemic and Aerosols: Does COVID-19 Transmit via Expiratory Particles? Aerosol Science and Technology, 54 (6), 635–638. doi: 10.1080/02786826.2020.1749229 Search in Google Scholar

Santarpia, J. L., Herrera, V. L., Rivera, D. N., Ratnesar-Shumate, S., Reid, St. P., Denton, P. W., … & Love, J.J. (2020). The Infectious Nature of Patient-Generated SARS-CoV-2 Aerosol. medRxiv. doi: 10.1101/2020.07.13.20041632 Search in Google Scholar

Bazant, M. Z., & Bush, J. W. M. (2020). Beyond Six Feet: A Guideline to Limit Indoor Airborne Transmission of COVID-19. medRxiv. doi: 10.1101/2020.08.26.20182824 Search in Google Scholar

Peng, Z., Rojas, A. L. P., Kropff, E., Bahnfleth, W., Buonanno, G., Dancer, S. J., … & Jimenez, J.L. (2021). Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and their Application to COVID-19 Outbreaks. medRxiv. doi: 10.1101/2021.04.21.21255898 Search in Google Scholar

Peng, Z., & Jimenez, J. L. (2021). Exhaled CO2 as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities. Environmental Science & Technology Letters, 8 (5), 392–397. doi: 10.1021/acs.estlett.1c00183 Search in Google Scholar

Telicko, J., Vidulejs, D. D., & Jakovics, A. (2021). A Monitoring System for Evaluation of COVID-19 Infection Risk. Journal of Physics: Conference Series, 2069 (1), 12192. doi: 10.1088/1742-6596/2069/1/012192 Search in Google Scholar

Duguid, J. P. (1946). The Size and the Duration of Air-Carriage of Respiratory Droplets and Droplet-Nuclei. Epidemiology and Infection, 44 (6), 471–479. doi: 10.1017/s0022172400019288 Search in Google Scholar

Schijven, J., Vermeulen, L. C., Swart, A., Meijer, A., Duizer, E., & de Roda Husman, A. M. (2020). Exposure Assessment for Airborne Transmission of SARS-CoV-2 via Breathing, Speaking, Coughing and Sneezing. medRxiv. doi: 10.1101/2020.07.02.20144832 Search in Google Scholar

Fabian, P., Brain, J., Houseman, E. A., Gern, J., & Milton, D. K. (2011). Origin of Exhaled Breath Particles from Healthy and Human Rhinovirus-Infected Subjects. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 24 (3), 137–147. doi: 10.1089/jamp.2010.0815 Search in Google Scholar

Holterman, H. (2003). Kinetics and evaporation of water drops in air. Wageningen: IMAG report 2003-12 Search in Google Scholar

Kai-Chung Cheng, Viviana Acevedo-Bolton, Ruo-Ting Jiang, Neil E. Klepeis, Wayne R. Ott, Oliver B. Fringer, and Lynn M. Hildemann. Modeling Exposure Close to Air Pollution Sources in Naturally Ventilated Residences: Association of Turbulent Diffusion Coefficient with Air Change Rate. Environmental Science & Technology 2011 45 (9), 4016-4022 DOI: 10.1021/es103080p Search in Google Scholar

Park, S. H., Kim, H. O., Han, Y. T., Kwon, S. B., & Lee, K. W. (2001). Wall Loss Rate of Polydispersed Aerosols. Aerosol Science and Technology, 35 (3), 710–717. doi: 10.1080/02786820152546752 Search in Google Scholar

Virbulis, J., Sjomkane, M., Surovovs, M., & Jakovics, A. (2021). Numerical Model for Prediction of Indoor COVID-19 Infection Risk Based on Sensor Data. Journal of Physics: Conference Series, 2069 (1), 12189. doi: 10.1088/1742-6596/2069/1/012189 Search in Google Scholar

van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., … & Munster, V.J. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine, 382 (16), 1564–1567. doi: 10.1056/nejmc2004973 Search in Google Scholar

Shi, B. (2012). Removal of Ultrafine Particles by Intermediate Air Filters in Ventilation Systems: Evaluation of Performance and Analysis of Applications (p. 177). Chalmers University of Technology (Sweden). Search in Google Scholar

Doughty, D. C., Hill, S. C., & Mackowski, D. W. (2021). Viruses Such as SARS-CoV-2 can be Partially Shielded from UV Radiation when in Particles Generated by Sneezing or Coughing: Numerical Simulations. Journal of Quantitative Spectroscopy and Radiative Transfer, 262, 107489. doi: 10.1016/j.jqsrt.2020.107489 Search in Google Scholar

Gidari, A., Sabbatini, S., Bastianelli, S., Pierucci, S., Busti, C., Bartolini, D., … & Francisci, D. (2021). SARS-CoV-2 Survival on Surfaces and the Effect of UV-C Light. Viruses, 13 (3), 408. doi: 10.3390/v13030408 Search in Google Scholar

Stahlhofen, W., Rudolf, G., & James, A. C. (1989). Intercomparison of Experimental Regional Aerosol Deposition Data. Journal of Aerosol Medicine, 2 (3), 285–308. doi: 10.1089/jam.1989.2.285 Search in Google Scholar

Basu, S. (2020). Computational Characterization of Inhaled Droplet Transport in the Upper Airway Leading to SARS-CoV-2 Infection. medRxiv. doi: 10.1101/2020.07.27.20162362 Search in Google Scholar

eISSN:
2255-8896
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics