Cite

IRENA. (n.d.). Policies for Green Hydrogen. Available at https://www.irena.org/Energy-Transition/Policy/Policies-for-green-hydrogen Search in Google Scholar

Peschel. A. (2020). Industrial Perspective on Hydrogen Purification, Compression, Storage, and Distribution. Fuel Cells, 20 (4), 385–393. Search in Google Scholar

Fragiacomo, P., & Genovese, M. (2020). Developing a Mathematical Tool for Hydrogen Production, Compression and Storage. International Journal of Hydrogen Energy, 45 (35), 7685–7701. Search in Google Scholar

European Commission. (2020). Communication from the Commission to the European Parliament, the Council, the European economic and social committee and the committee of the regions. A Hydrogen Strategy for a Climate-Neutral Europe. Brussels, 8.7.2020. COM (2020) 301 final. Search in Google Scholar

IEA. (2021). Global Hydrogen Review 2021. IEA, Paris. Available at https://www.iea.org/reports/global-hydrogen-review-2021. Search in Google Scholar

Yu, M., Wang, K., & Vredenburg, H. (2021). Insights into Low-Carbon Hydrogen Production Methods: Green, Blue and Aqua Hydrogen. International Journal of Hydrogen Energy, 46 (41), 21261–21273. Search in Google Scholar

Sdanghi, G., Maranzana, G., Celzard, A., & Fierro, V. (2019). Review of the Current Technologies and Performances of Hydrogen Compression for Stationary and Automotive Applications. Renewable and Sustainable Energy Reviews, 102, 150–170. Search in Google Scholar

IEA. (2020). Global Installed Electrolysis Capacity by Region, 2015–2020. IEA, Paris. Available at https://www.iea.org/data-and-statistics/charts/global-installed-electrolysis-capacity-by-region-2015-2020. Search in Google Scholar

Techcrunch. (n.d.). Volvo AB and Daimler Trucks Team up in a Hydrogen Fuel Cell Joint Venture. Available at https://techcrunch.com/2021/05/03/volvo-ag-and-daimler-trucks-team-up-in-hydrogen-fuel-cell-joint-venture/ Search in Google Scholar

Toyota. (nd.). Toyota Mirai 2022 Edition. Available at https://www.toyota.com/mirai/ Search in Google Scholar

Bezrukovs, V., Bezrukovs, Vl., Konuhova, M., Bezrukovs, D., & Berzins, A. (2022). Hydrogen Hydraulic Compression System for Refuelling Stations. Latvian Journal of Physics and Technical Sciences, 59 (3), 96–105. DOI: 10.2478/lpts-2022-0028. Search in Google Scholar

Zou, J., Han, N., Yan, J., Feng, Q., Wang, Y., Zhao, Z., ...& Wang, H. (2020). Electrochemical Compression Technologies for High-Pressure Hydrogen: Current Status, Challenges and Perspective. Electrochem. Energ. Rev., 3, 690–729. Search in Google Scholar

Humphrey, H.A. (1909). An Internal-Combustion Pump and Other Applications of a New Principle. Proc. Inst. Mech. Eng., 1123. Search in Google Scholar

Joyce, N.G. (1984). The Humphrey pump – An internal combustion pump. In Proceedings of the Conference on Small Engines and their Fuels in Developing Countries, (pp. 31–44). Reading, Berkshire, England. Search in Google Scholar

Van de Ven, J.D., & Li, P.Y. (2009). Liquid Piston Gas Compression. Applied Energy, 86 (10), 2183–2191. doi:10.1016/j.apenergy.2008.12.001 Search in Google Scholar

Bezrukovs, V., Bezrukovs, Vl., Bezrukovs, D., Orlova, S., Konuhova, M., Berzins, A., ... & Pranskus P. (2021). Hydrogen Hydraulic Compression Device. WO2023017306, 16.03.2023. Search in Google Scholar

Bezrukovs, V., Bezrukovs, Vl., Bezrukovs, D., Konuhova, M., & Berzins, A. (2022). Hydrogen Hydraulic Compression Device. LVP2022000071, 31 August 2022. Search in Google Scholar

Bezrukovs, V., Bezrukovs, Vl., Bezrukovs, D., Konuhova, M., & Berzins, A. (2022). Hydrogen Hydraulic Compression Device. PCT/IB2022/058904, 21 September 2022. Search in Google Scholar

Enapter. (n.d.). AEM Electrolyser EL 4.0, Datasheet. Available at https://handbook.enapter.com/electrolyser/el40/downloads/Enapter_Datasheet_EL40_EN.pdf Search in Google Scholar

eISSN:
2255-8896
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics