Cite

1. Crovisier, J., Colom, P., Biver, N., Bockelée-Morvan, D., & Boissier, J. (2013). Observations of the 18-cm OH Lines of Comet 103P/Hartley 2 at Nancay in Support to the EPOXI and Herschel Missions. Icarus, 222 (2), 679–683.10.1016/j.icarus.2012.03.033 Search in Google Scholar

2. Lovell, A. J., Howell, E. S., Schloerb, F. P., Lewis, B. M., & Hine, A. A. (2002). Arecibo observations of the 18 cm OH lines of six comets. In B. Warmbein, ed., Asteroids, Comets, and Meteors: ACM 2002, vol. 500 of ESA Special Publication, (pp. 681–684). Search in Google Scholar

3. Turner, B. E. (1974). Detection of OH at 18-CENTIMETER Wavelength in Comet Kohoutek (1973f). Astrophysical Journal, 189, L137–L139.10.1086/181485 Search in Google Scholar

4. Volvach, A. E., Berezhnoi, A. A., Volvach, L. N., Strepka, I. D., & Volvach, E. A. (2011). Observations of OH Maser Lines at an 18-cm Wavelength in 9p/Temper1 and Lulin c/2007 n3 Comets with rt-22 at the Crimean Astrophysical Observatory. Bulletin of the Crimean Astrophysical Observatory, 107 (1), 122–124.10.3103/S0190271711010165 Search in Google Scholar

5. Crovisier, J. (2021). Results from the Nançay Database of OH 18cm Lines in Comets. Available at https://lesia.obspm.fr/planeto/cometes/basecom/ Search in Google Scholar

6. Despois, D., Gerard, E., Crovisier, J., & Kazes, I. (1981). The OH Radical in Comets – Observation and Analysis of the Hyperfine Microwave Transitions at 1667 MHz and 1665 MHz. Astronomy and Astrophysics, 99, 320–340. Search in Google Scholar

7. Bleiders, M., Berzins, A., Jekabsons, N., Skirmante, K., & Bezrukovs, Vl. (2019). Low-Cost L-Band Receiving System Front-End for Irbene RT-32 Cassegrain Radio Telescope. Latvian Journal of Physics and Technical Sciences, 56 (3), 50–61.10.2478/lpts-2019-0019 Search in Google Scholar

8. Skirmante, K., Eglitis, I., Jekabsons, N., Bezrukovs, V., Bleiders, M., Nechaeva, M., & Jasmonts, G. (2020). Observations of Astronomical Objects Using Radio (Irbene RT-32 Telescope) and Optical (Baldone Schmidt) Methods. Astronomical and Astrophysical Transactions, 32 (1), 13–22.10.17184/eac.4392 Search in Google Scholar

9. Bleiders, M., Antyufeyev, O., Patoka, O., Orbidans, A., Aberfelds, A., Steinbergs, J., … & Shmeld, I. (2020). Spectral Line Registration Backend Based on USRP X300 Software Defined Radio. Journal of Astronomical Instrumentation, 9 (2), 2050009.10.1142/S2251171720500099 Search in Google Scholar

10. Winkel, B., Kraus, A., & Bach, U. (2012). Unbiased Flux Calibration Methods for Spectral-Line Radio Observations. Astronomy and Astrophysics, 540, A140.10.1051/0004-6361/201118092 Search in Google Scholar

11. Heinzel, G., Rüdige, A., & Schilling, R. (2002). Spectrum and Spectral Density Estimation by the Discrete Fourier Transform (DFT), Including a Comprehensive List of Window Functions and Some New Flat-Top Windows. Available at https://holometer.fnal.gov/GH_FFT.pdf Search in Google Scholar

12. Lewis, B. M. (1997). Main-line OH Observations of the Arecibo Set of OH/IR Stars. Astrophysical Journal Supplement Series, 109, 489È515.10.1086/312985 Search in Google Scholar

13. Fix, J. D., & Weisberg, J. M. (1978). A Low-Detection Limit Search for OH Emission from the Infrared Stars. The Astrophysical Journal, 220, 836–840.10.1086/155973 Search in Google Scholar

14. Wolak, P., Szymczak, M., & Gérard, E. (2012). Polarization Properties of OH Masers in AGB and Post-AGB Stars. A&A, 537, A5. doi: 10.1051/0004-6361/201117263. Open DOISearch in Google Scholar

15. Sobolev, A. M., Ladeyschikov, D. A., & Nakashima, J. (2019). Database of Molecular Masers and Variable Stars. RAA, 19 (3), 34. doi: 10.1088/1674–4527/19/3/34. Open DOISearch in Google Scholar

16. Szymczak, M., & Le Squeren, A. M. (1999). A Comparison of OH and H2O Maser Properties of Mira and Semiregular Variable Stars. Mon. Not. R. Astron. Soc., 304 (2), 415–420.10.1046/j.1365-8711.1999.02321.x Search in Google Scholar

17. Nechaeva, M., Antipenko, A., Bezrukov, D., Bezrukovs, Vl., Dementjev, A., Dugin, N., … & Voytyuk, V. (2013). First Results of the VLBI Experiment on Radar Location of the Asteroid 2012 DA14. Baltic Astronomy, 22, 341–346.10.1515/astro-2017-0164 Search in Google Scholar

18. Trudu, M., Pilia, M., Hellbourg, G., Pari., P., Antonietti, N., Maccone, C., … & Trois, A. (2020). Performance Analysis of the Karhunen–Loeve Transform for Artificial and Astrophysical Transmissions: Denoising and Detection. MNRAS, 494, 69–83. doi:10.1093/mnras/staa694 Open DOISearch in Google Scholar

19. Maccone, C. (2010). The KLT (Karhunen– Loeve Transform) to Extend SETI Searches to Broad-Band and Extremely Feeble Signals. Acta Astronautica, 67 (11–12), 1427–1439.10.1016/j.actaastro.2010.05.002 Search in Google Scholar

eISSN:
2255-8896
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics