Acceso abierto

Multifocal Near-Eye Display: Timing of Optical Diffuser Elements and Synchronization to DLP-Based Projection Microunit


Cite

1. Cearley, D. W. (2020). Top 10 Strategic Technology Trends for 2020. Available at https://emtemp.gcom.cloud/ngw/globalassets/en/publications/documents/toptech-trends-2020-ebook.pdf Search in Google Scholar

2. Rauschnabel, P. A., & Ro, Y. K. (2016). Augmented Reality Smart Glasses: An Investigation of Technology Acceptance Drivers. International Journal of Technology Marketing, 11 (2), 123. https://doi.org/10.1504/IJTMKT.2016.075690. Search in Google Scholar

3. Vishton, P. M., & Cutting, J. E. (1995). Perceiving Layout and Knowing Distances: The Integration, Relative Potency, and Contextual Use of Different Information about Depth. Perception of Space and Motion, 5, 69–117. San Diego, CA: Academic Press.10.1016/B978-012240530-3/50005-5 Search in Google Scholar

4. Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks, M. S. (2008). Vergence-Accommodation Conflicts Hinder Visual Performance and Cause Visual Fatigue. Journal of Vision, 8 (3), 1–30. https://doi.org/10.1167/8.3.33.287932618484839 Search in Google Scholar

5. Shibata, T., Kim, J., Hoffman, D. M., & Banks, M. S. (2011). Visual discomfort with stereo displays: Effects of viewing distance and direction of vergence-accommodation conflict. In A. J. Woods, N. S. Holliman, & N. A. Dodgson (Eds.), Stereoscopic Displays and Applications XXII (vol. 7863, p. 78630P). https://doi.org/10.1117/12.872347.315096321826254 Search in Google Scholar

6. Zabels, R., Osmanis, K., Narels, M., Gertners, U., Ozols, A., Rutenbergs, K., & Osmanis, I. (2019). AR Displays: Next-Generation Technologies to Solve the Vergence-Accommodation Conflict. Applied Sciences (Switzerland), 9 (15). https://doi.org/10.3390/app9153147. Search in Google Scholar

7. Ozols, A., Zutis, E., Zabels, R., Linina, E., Osmanis, K., & Osmanis, I. (2021). Fast-switching liquid crystal diffusers: Outlook on optical properties and applicability in volumetric display architecture. In: C. Peroz & B. C. Kress (Eds.), Digital Optical Technologies 2021 (p. 26). SPIE. https://doi.org/10.1117/12.2594147. Search in Google Scholar

8. Osmanis, K., Valters, G., Zabels, R., Gertners, U., Osmanis, I., Kalnins, L., … & Ozols, A. (2018). Advanced multiplanar volumetric 3D display. In: I. Muševič, L.-C. Chien, D. J. Broer, & V. G. Chigrinov (Eds.), Emerging Liquid Crystal Technologies XIII (vol. 1055510, p. 36). SPIE. https://doi.org/10.1117/12.2297629. Search in Google Scholar

9. de Lange Dzn, H. (1954). Relationship between Critical Flicker-Frequency and a Set of Low-Frequency Characteristics of the Eye. Journal of the Optical Society of America, 44 (5), 380. https://doi.org/10.1364/JOSA.44.000380. Search in Google Scholar

10. Brown, A., Corner, M., Crewther, D. P., & Crewther, S. G. (2018). Human Flicker Fusion Correlates with Physiological Measures of Magnocellular Neural Efficiency. Frontiers in Human Neuroscience, 12, 1–7. https://doi.org/10.3389/fnhum.2018.00176.596066529867406 Search in Google Scholar

11. Zabels, R., Osmanis, K., Narels, M., Smukulis, R., & Osmanis, I. (2019). Integrated Head-Mounted Display System Based on a Multi-Planar Architecture. Advances in Display Technologies IX, 1094208. https://doi.org/10.1117/12.2509954. Search in Google Scholar

12. Anderson, C. H. (2000). DMD Modulated Continuous Wave Light Source for Imaging Systems. United States Patent. Search in Google Scholar

13. Texas Instruments. (2020). DLPC3430 and DLPC3435 Display Controller Datasheet. Available at https://www.ti.com/lit/ds/symlink/dlpc3430.pdf Search in Google Scholar

eISSN:
2255-8896
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics