Acceso abierto

Investigation of Power Efficiency Changes in DWDM Systems Replacing Erbium-Doped Amplifiers By Semiconductor Optical Amplifiers


Cite

1. Cisco Systems, Inc. (2020). Cisco Annual Internet Report (2018–2023). Available at https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html Search in Google Scholar

2. Ghazisaeidi, A., de Jauregui Ruiz, I.F., Rios-Muller, R., Schmalen, L., Tran, P., Brindel, P., … & Renaudier, J. (2016). 65Tb/s transoceanic transmission using probabilistically shaped PDM-64QAM. In: 42nd European Conference on Optical Communication, 18–22 September 2016, Dusseldorf, Germany. Search in Google Scholar

3. Cai, J.-X., Batshon, H.G., Mazurczyk, M.V., Sinkin, O.V., Wang, D., Paskov, M., … & Foursa, D.G. (2018). 51.5 Tb/s Capacity over 17,107 km in C+L Bandwidth Using Single-Mode Fibres and Nonlinearity Compensation. Journal of Lightwave Technology, 36 (11), 2135–2141. DOI: 10.1109/JLT.2018.280232210.1109/JLT.2018.2802322 Search in Google Scholar

4. Zhang, S., Yaman, F., Huang, Y.-K., Downie, J.D., Zou, D., Wood, W.A., … & Inada, Y. (2016). Capacity-approaching transmission over 6375 km at spectral efficiency of 8.3 bit/s/Hz. In: 2016 Optical Fibre Communications Conference and Exhibition (OFC), 20–24 March 2016, Anaheim, CA, USA.10.1364/OFC.2016.Th5C.2 Search in Google Scholar

5. Malmodin, J., & Lundén, D. (2018). The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015, Sustainability. Available at https://www.researchgate.net/publication/327248403_The_Energy_and_Carbon_Footprint_of_the_Global_ICT_and_EM_Sectors_2010-201510.3390/su10093027 Search in Google Scholar

6. Essiambre, R., Kramer, G., Winzer, P.J., Foschini, G.J., & Goebel, B. (2010). Capacity Limits of Optical Fibre Networks. Journal of Lightwave Technology, 28 (4), 662–701. DOI: 10.1109/JLT.2009.203946410.1109/JLT.2009.2039464 Search in Google Scholar

7. Ghazisaeidi, A., de Jauregui Ruiz, I.F., Rios-Muller, R., Schmalen, L., Tran, P., Brindel, P., … & Renaudier, J. (2017). Advanced C+L-Band Transoceanic Transmission Systems Based on Probabilistically Shaped PDM-64QAM, Journal of Lightwave Technology, 35 (7), 1291–1299. DOI: 10.1109/JLT.2017.265732910.1109/JLT.2017.2657329 Search in Google Scholar

8. Ionescu, M., Lavery, D., Edwards, A., Sillekens, E., Galdino, L., Semrau, D., … & Bayvel, P. (2019). 74.38 Tb/s transmission over 6300 km single mode fibre with hybrid EDFA/Raman amplifiers. In: Optical Fibre Communications Conference and Exhibition (OFC), (pp. 1–3), 3–7 March 2019, San Diego, California, USA. Available at https://arxiv.org/abs/1902.0982110.1364/OFC.2019.Tu3F.3 Search in Google Scholar

9. Akiyama, T., Ekawa, M., Sugawara, M., Sudo, H., Kawaguchi, K., Kuramata, A., … & Arakawa, Y. (2004). An ultrawide-band (120 nm) semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm realized with quantum-dot active layersb. In: Optical Fibre Communication Conference, 22 February 2004, Los Angeles, California, USA.10.1109/LPT.2005.851884 Search in Google Scholar

10. Renaudier, J., Meseguer, A.C., Ghazisaeidi, A., Tran, P., Rios-Muller, R., Brenot, R., … & Charlet, G. (2017). First 100-nm continuous-band WDM transmission system with 115Tb/s transport over 100km using novel ultra-wideband semiconductor optical amplifiers. In: 2017 European Conference on Optical Communication (ECOC), (pp. 1–3), 17–21 September 2017, Gothenburg: IEEE. DOI: 10.1109/ECOC.2017.834608410.1109/ECOC.2017.8346084 Search in Google Scholar

11. Renaudier, J., Meseguer, A.C., Ghazisaeidi, A., Brindel, P., Tran, P., Verdier, A., … & Charlet, G. (2018). Field trial of 100nm ultra-wideband optical transport with 42GBd 16QAM real-time and 64GBd PCS64QAM channels. In 2018 European Conference on Optical Communication (ECOC), (pp. 1–3), 23–27 September 2018, Rome, Italy: IEEE. DOI: 10.1109/ECOC.2018.853534910.1109/ECOC.2018.8535349 Search in Google Scholar

12. Bendimerad, D.F., & Frignac, Y. (2017). Numerical Investigation of SOA Nonlinear Impairments for Coherent Transmission Systems Based on SOA Amplification. Journal of Lightwave Technology, 35 (24), 5286–5295. DOI: 10.1109/JLT.2017.277222310.1109/JLT.2017.2772223 Search in Google Scholar

13. Ghazisaeidi, A. (2019). Theory of Coherent WDM Systems Using In-line Semiconductor Optical Amplifiers. J. Lightwave Technol., 37, 4188–4200. DOI: 10.1109/JLT.2019.292186410.1109/JLT.2019.2921864 Search in Google Scholar

14. Pavlovs, D., Bobrovs, V., Vilcāne, K., & Ivanovs, G. (2019). Investigation of optical signal regeneration impact on power efficiency of single-line-rate and mixed-line-rate wavelength division multiplexing systems. In: PhotonIcs & Electromagnetics Research SymposiumSpring (PIERS-Spring), (pp. 896–901), 17–20 June 2019, Rome, Italy: IEEE. DOI: 10.1109/PIERS-Spring46901.2019.901764410.1109/PIERS-Spring46901.2019.9017644 Search in Google Scholar

15. Pavlovs, D., Bobrovs, V., Parfjonovs, M., Alsevska, A., & Ivanovs, G. (2017). Evaluation of Signal Regeneration Impact on the Power Efficiency of Long-Haul DWDM Systems. Latvian Journal of Physics and Technical Sciences, 54 (5), 68–77. DOI: 10.1515/lpts-2017-003510.1515/lpts-2017-0035 Search in Google Scholar

16. Agrawal, G.P. (2007). Nonlinear Fibre Optics. New York, NY, USA: Academic. Search in Google Scholar

17. Velasco, L., Jirattigalachote, A., Ruiz, M., Monti, P., Wosinska, L., & Junyent, G. (2012). Statistical approach for fast impairment-aware provisioning in dynamic all-optical networks. IEEE/OSA Journal of Optical Communications and Networking, 4 (2), 130–141. DOI: 10.1364/JOCN.4.00013010.1364/JOCN.4.000130 Search in Google Scholar

18. Pavlovs, D., Parts, R., Muratbeck, D., & Bobrovs, V. (2017). Comparison of power efficiency and signal regeneration impact in the SLR DWDM transmission systems with different spectral band. In: Progress in Electromagnetics Research SymposiumFall (PIERS - FALL), (pp. 1122–1127), 19–22 November 2017. Singapore: IEEE.10.1109/PIERS-FALL.2017.8293302 Search in Google Scholar

eISSN:
2255-8896
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics