Acceso abierto

The Relation Between Photoconductivity Threshold and Open-Circuit Voltage in Organic Solar Cells


Cite

1. Liu, Q., Jiang, Y., Jin, K., Qin, J., Xu, J., Li, W. … & Ding, L. (2020). 18% Efficiency Organic Solar Cells. Sci. Bull., 65, 272–275. doi:10.1016/j.scib.2020.01.001.10.1016/j.scib.2020.01.001 Search in Google Scholar

2. Qi, B., & Wang, J. (2013). Fill Factor in Organic Solar Cells. Phys. Chem. Chem. Phys., 15, 8972–8982. doi:10.1039/c3cp51383a.10.1039/c3cp51383a Search in Google Scholar

3. Deibel, C., & Dyakonov, V. (2010). Polymer-Fullerene Bulk Heterojunction Solar Cells. Reports Prog. Phys., 73. doi:10.1088/0034-4885/73/9/096401.10.1088/0034-4885/73/9/096401 Search in Google Scholar

4. Scharber, M.C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J., & Brabec, C.J. (2006). Design Rules for Donors in Bulk-Heterojunction solar Cells - Towards 10 % Energy-Conversion Efficiency. Adv. Mater., 18, 789–794. doi:10.1002/adma.200501717.10.1002/adma.200501717 Search in Google Scholar

5. Chandekar, A., & Whitten, J.E. (2005). Ultraviolet Photoemission and Electron Loss Spectroscopy of Oligothiophene Films. Synth. Met., 150, 259–264. doi:10.1016/j. synthmet.2005.02.013.10.1016/j.synthmet.2005.02.013 Search in Google Scholar

6. Casu, M.B., Imperia, P., Schrader, S., & Falk, B. (2001). Ultraviolet Photoelectron Spectroscopy of Thin Films of New Materials for Multilayer Organic Light Emitting Diodes. Surf. Sci., 482–485, 1205–1209. doi:10.1016/S0039-6028(01)00733-6.10.1016/S0039-6028(01)00733-6 Search in Google Scholar

7. Honda, M., Kanai, K., Komatsu, K., Ouchi, Y., Ishii, H., & Seki, K. (2007). Atmospheric Effect of Air, N2, O2, and Water Vapor on the Ionization Energy of Titanyl Phthalocyanine Thin Film Studied by Photoemission Yield Spectroscopy. J. Appl. Phys., 102. doi:10.1063/1.2809360.10.1063/1.2809360 Search in Google Scholar

8. Monjushiro, H., Watanabe, I., & Yokoyama, Y. (1991). Ultraviolet Photoelectron Yield Spectra of Thin Gold Films Measured in Air. Anal. Sci., 7, 543–547. doi:10.2116/analsci.7.543.10.2116/analsci.7.543 Search in Google Scholar

9. Grzibovskis, R., & Vembris, A. (2016). Study of the P3HT/PCBM Interface Using Photoemission Yield Spectroscopy. Org. Photonics, 7, 98950Q. doi:10.1117/12.2227823.10.1117/12.2227823 Search in Google Scholar

10. Grzibovskis, R., & Vembris, A. (2018). Energy Level Determination in Bulk Heterojunction Systems Using Photoemission Yield Spectroscopy: Case of P3HT:PCBM. J. Mater. Sci., 53, 7506–7515. doi:10.1007/s10853-018-2050-9.10.1007/s10853-018-2050-9 Search in Google Scholar

11. Wang, Y., Chen, J., Do Kim, H., Wang, B., Iriguchi, R., & Ohkita, H. (2018). Ternary Blend Solar Cells Based on a Conjugated Polymer with Diketopyrrolopyrrole and Carbazole Units. Front. Energy Res., 6, 1–9. doi:10.3389/fenrg.2018.00113.10.3389/fenrg.2018.00113 Search in Google Scholar

12. Hou, J., & Guo, X. (2013). Active Layer Materials for Organic Solar Cells. Green Energy Technol., 128, 17–42. doi:10.1007/978-1-4471-4823-4_2.10.1007/978-1-4471-4823-4_2 Search in Google Scholar

13. Li, J., Liang, Z., Peng, Y., Lv, J., Ma, X., Wang, Y., … & Xia, Y. (2018). 36% Enhanced Efficiency of Ternary Organic Solar Cells By Doping a NT-Based Polymer as an Electron-Cascade Donor. Polymers (Basel), 10. doi:10.3390/polym10070703.10.3390/polym10070703 Search in Google Scholar

14. Wu, J., Yue, G., Xiao, Y., Lin, J., Huang, M., Lan, Z., … & Sato, T. (2013). An Ultraviolet Responsive Hybrid Solar Cell Based on Titania/Poly(3- Hexylthiophene). Sci. Rep., 3. doi:10.1038/srep01283.10.1038/srep01283 Search in Google Scholar

15. Safriani, L., Risdiana, R., Fitrilawati, F., Manawan, M., Bahtiar, A., Aprilia, A., … & Watanabe, I. (2018). Charge Carrier Transport in Blend of P3HT and ZnO Nanoparticles at Low Temperature Studied by μsR. J. Phys. Conf. Ser., 1080, 0–5. doi:10.1088/1742-6596/1080/1/012011.10.1088/1742-6596/1080/1/012011 Search in Google Scholar

16. Hill, I.G., Kahn, A., Soos, Z.G., & Pascal, R.A. (2000). Charge-Separation Energy in Films of π -Conjugated Organic Molecules. Chem. Phys. Lett., 327, 181–188. doi:10.1016/S0009-2614(00)00882-4.10.1016/S0009-2614(00)00882-4 Search in Google Scholar

17. Fahlman, A., Hamrin, K., Hedman, J., Nordberg, R., Nordling, C., & Siegbanh, K. (1966). Electron Spectroscopy and Chemical Binding. Nature, 210, 4–8. doi:https://doi.org/10.1038/210004a0.10.1038/210004a0 Search in Google Scholar

18. Grzibovskis, R., Vembris, A., Sebris, A., Kapilinskis, Z., & Turks, M. (2018). Energy Level Determination of Purine Containing Blue Light Emitting Organic Compounds. Proc. SPIE., 10687, 47. doi:10.1117/12.2307422.10.1117/12.2307422 Search in Google Scholar

19. Sworakowski, J., Lipiński, J., & Janus, K. (2016). On the Reliability of Determination of Energies of HOMO and LUMO Levels in Organic Semiconductors from Electrochemical Measurements. A Simple Picture Based on the Electrostatic Model. Org. Electron., 33, 300–310. doi:10.1016/j. orgel.2016.03.031.10.1016/j.orgel.2016.03.031 Search in Google Scholar

20. Sworakowski, J., & Janus, K. (2017). On the Reliability of Determination of Energies of HOMO Levels in Organic Semi-conducting Polymers from Electrochemical Measurements. Org. Electron., 48, 46–52. doi:10.1016/j.orgel.2017.05.031.10.1016/j.orgel.2017.05.031 Search in Google Scholar

21. Whitcher, T.J., Wong, W.S., Talik, A.N., Woon, K.L., Rusydi, A., Chanlek, N., … & Songsiriritthigul, P. (2018). Energy Level Alignment of Blended Organic Semiconductors and Electrodes at the Interface. Curr. Appl. Phys., 18, 982–992. doi:10.1016/j.cap.2018.05.002.10.1016/j.cap.2018.05.002 Search in Google Scholar

22. Luo, H., Lai, J., Wang, C., & Chen, Q. (2018). Understanding the Effects of the Energy Band Alignment at the Donor/Acceptor Interface on the Open Circuit Voltage of Organic Photovoltaic Devices. Chem. Phys. Lett., 711, 113–117. doi:10.1016/j. cplett.2018.08.074.10.1016/j.cplett.2018.08.074 Search in Google Scholar

23. Kim, H.B., & Kim, J.J. (2018). A Simple Method to Measure Intermolecular Charge-Transfer Absorption of Organic Films. Org. Electron., 62, 511–515. doi:10.1016/j. orgel.2018.06.022.10.1016/j.orgel.2018.06.022 Search in Google Scholar

24. List, M., Sarkar, T., Perkhun, P., Ackermann, J., Luo, C., & Würfel, U. (2018). Correct Determination of Charge Transfer State Energy from Luminescence Spectra in Organic Solar Cells. Nat. Commun., 9, 1–8. doi:10.1038/s41467-018-05987-8.10.1038/s41467-018-05987-8612888930194300 Search in Google Scholar

25. Khan, S.U.Z., Londi, G., Liu, X., Fusella, M.A., D’Avino, G., Muccioli, L., … & Rand, B.P. (2019). Multiple Charge Transfer States in Donor-Acceptor Heterojunctions with Large Frontier Orbital Energy Offsets. Chem. Mater., 31, 6808–6817. doi:10.1021/acs.chemmater.9b01279.10.1021/acs.chemmater.9b01279 Search in Google Scholar

26. Ruduss, A., Traskovskis, K., Grzibovskis, R., & Kokars, V. (2019). Synthesis and Photoelectrical Properties of 3-(Diphenylamino)Carbazolyl -Functionalized DMABI Derivatives. Key Eng. Mater., 280–285. doi:10.4028/www. scientific.net/KEM.800.280.10.4028/www.scientific.net/KEM.800.280 Search in Google Scholar

27. Ruduss, A., Traskovskis, K., Vembris, A., Grzibovskis, R., Pudzs, K., Lielbardis, M., & Kokar, V. (2019). Synthesis and Investigation of Charge Transport Properties in Adducts of Hole Transporting Carbazole Derivatives and Push-Pull Azobenzenes. J. Phys. Chem. Solids., 127, 178–185. doi:10.1016/j. jpcs.2018.12.019.10.1016/j.jpcs.2018.12.019 Search in Google Scholar

eISSN:
2255-8896
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics