Acceso abierto

WO3 as Additive for Efficient Photocatalyst Binary System TiO2/WO3

, , ,  y   
07 dic 2021

Cite
Descargar portada

1. Ahn, Y. (2003). Variation of Structural and Optical Properties of Sol-Gel TiO2 Thin Films with Catalyst Concentration and Calcination Temperature. Materials Letters, 57 (30), 4660–4666. Search in Google Scholar

2. Hasan, M. M., Haseeb, A. S. M. A., Saidur, R., & Masjuki, H. H. (2008). Effects of Annealing Treatment on Optical Properties of Anatase TiO 2 Thin Films. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2, 410–414. Search in Google Scholar

3. Daviðsdóttir, S., Shabadi, R., Galca, A. C., Andersen, I. H., Dirscherl, K., & Ambat, R. (2014). Investigation of DC Magnetron-Sputtered TiO2 Coatings: Effect of Coating Thickness, Structure, and Morphology on Photocatalytic Activity. Applied Surface Science, 313, 677–686. Search in Google Scholar

4. Regonini, D., & Clemens, F. J. (2015). Anodized TiO2 Nanotubes: Effect of Anodizing Time on Film Length, Morphology and Photoelectrochemical Properties. Materials Letters, 142, 97–101. Search in Google Scholar

5. Grimes, C. A., & Mor, G. K. (2009). TiO2 Nanotube Arrays. Boston, MA: Springer US. Search in Google Scholar

6. Sofiane, S., & Bilel, M. (2016). Effect of Specific Surface Area on Photoelectrochemical Properties of TiO2 Nanotubes, Nanosheets and Nanowires Coated with TiC Thin Films. Journal of Photochemistry and Photobiology A: Chemistry, 324, 126–133. Search in Google Scholar

7. Arifin, K., Yunus, R. M., Minggu, L. J., & Kassim, M. B. (2021). Improvement of TiO2 nanotubes for Photoelectrochemical Water Splitting: Review. International Journal of Hydrogen Energy, 46 (7), 4998–5024. Search in Google Scholar

8. Khaw, J. S., Curioni, M., Skeldon, P., Bowen, C. R., & Cartmell, S. H. (2019). A Novel Methodology for Economical Scale-Up of TiO2 Nanotubes Fabricated on Ti and Ti Alloys. Journal of Nanotechnology, 2019. Search in Google Scholar

9. Fujishima, A., & Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238 (5358), 37–38. Search in Google Scholar

10. Varghese, O. K., Gong, D., Paulose, M., Ong, K. G., & Grimes, C. A. (2003). Hydrogen Sensing Using Titania Nanotubes. Sensors and Actuators B: Chemical, 93 (1–3), 338–344. Search in Google Scholar

11. Wu, H., & Zhang, Z. (2011). High Photoelectrochemical Water Splitting Performance on Nitrogen Doped Double-Wall TiO 2 Nanotube Array Electrodes. International Journal of Hydrogen Energy, 36 (21), 13481–13487. Search in Google Scholar

12. Ismail, A. A., & Bahnemann, D. W. (2014). Photochemical Splitting of Water for Hydrogen Production by Photocatalysis: A Review. Solar Energy Materials and Solar Cells, 128, 85–101. Search in Google Scholar

13. Osterloh, F. E. (2008m) Inorganic Materials as Catalysts for Photochemical Splitting of Water. Chemistry of Materials, 20 (1), 35–54. Search in Google Scholar

14. Qamar, M., Drmosh, Q., Ahmed, M. I., Qamaruddin, M., & Yamani, Z. H. (2015). Enhanced Photoelectrochemical and Photocatalytic Activity of WO3-Surface Modified TiO2 Thin Film. Nanoscale Research Letters, 10 (1), 54. Search in Google Scholar

15. Liepina, I., Bajars, G., Rublans, M., Kleperis, J., Lusis, A., & Pentjuss, E. (2015). Structure and Photocatalytic Properties of TiO2 -WO3 Composites Prepared by Electrophoretic Deposition. IOP Conference Series: Materials Science and Engineering, 77 (1), 012039. Search in Google Scholar

16. Rong, X., Qiu, F., Zhang, C., Fu, L., Wang, Y., & Yang, D. (2015). Preparation, Characterization and Photocatalytic Application of TiO2-Graphene Photocatalyst under Visible Light Irradiation. Ceramics International, 41 (2), 2502–2511. Search in Google Scholar

17. Lu, X., Ma, Y., Tian, B., & Zhang, J. (2011). Preparation and Characterization of Fe–TiO2 Films with High Visible Photoactivity by Autoclaved-Sol Method at Low Temperature. Solid State Sciences, 13 (3), 625–629. Search in Google Scholar

18. Ola, O., & Maroto-Valer, M. M. (2015). Transition Metal Oxide Based TiO2 Nanoparticles for Visible Light Induced CO2 Photoreduction. Applied Catalysis A: General, 502, 114–121. Search in Google Scholar

19. Amano, F., Ishinaga, E., & Yamakata, A. (2013). Effect of Particle Size on the Photocatalytic Activity of WO3 Particles for Water Oxidation. Journal of Physical Chemistry C, 117 (44), 22584–22590. Search in Google Scholar

20. Riboni, F., Bettini, L. G., Bahnemann, D. W., & Selli, E. (2013). WO3-TiO2 vs. TiO2 Photocatalysts: Effect of the W Precursor and Amount on the Photocatalytic Activity of Mixed Oxides. Catalysis Today, 209, 28–34. Search in Google Scholar

21. Yoo, H., Oh, K., Nah, Y. C., Choi, J., & Lee, K. (2018). Single-Step Anodization for the Formation of WO3-Doped TiO2 Nanotubes toward Enhanced Electrochromic Performance. ChemElectroChem, 5 (22), 3379–3382. Search in Google Scholar

22. Lee, W. H., Lai, C. W., & Abd Hamid, S. B. (2015). In Situ Anodization of WO3-Decorated TiO2 Nanotube Arrays for Efficient Mercury Removal. Materials, 8 (9), 5702–5714. Search in Google Scholar

23. Nazari, M., Golestani-Fard, F., Bayati, R., & Eftekhari-Yekta, B. (2015). Enhanced Photocatalytic Activity in Anodized WO3-Loaded TiO2 Nanotubes. Superlattices and Microstructures, 80 (4), 91–101. Search in Google Scholar

24. Regonini, D., Bowen, C. R. R., Jaroenworaluck, A., & Stevens, R. (2013). A Review of Growth Mechanism, Structure and Crystallinity of Anodized TiO2 Nanotubes. Materials Science and Engineering R: Reports, 74 (12), 377–406. Search in Google Scholar

25. Khoo, E., Lee, P. S., & Ma, J. (2010). Electrophoretic Deposition (EPD) of WO3 Nanorods for Electrochromic Application. Journal of the European Ceramic Society, 30 (5), 1139–1144. Search in Google Scholar

26. Lai, C. W., & Sreekantan, S. (2013). Incorporation of WO3 Species into TiO2 Nanotubes via Wet Impregnation and their Water-Splitting Performance. Electrochimica Acta, 87, 294–302. Search in Google Scholar

27. Patterson, A. L. (1939), The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 56 (10), 978–982. Search in Google Scholar

28. Hunge, Y. M., Mahadik, M. A., Moholkar, A. V., & Bhosale, C. H. (2017). Photoelectrocatalytic Degradation of Oxalic Acid Using WO3 and Stratified WO3/TiO2 Photocatalysts under Sunlight Illumination. Ultrasonics Sonochemistry, 35, 233–242. Search in Google Scholar

29. Cai, Z.-X., Li, H.-Y., Ding, J.-C., & Guo, X. (2017). Hierarchical Flowerlike WO3 Nanostructures Assembled by Porous Nanoflakes for Enhanced NO Gas Sensing. Sensors and Actuators B: Chemical, 246, 225–234. Search in Google Scholar

30. Kleperis, J., Zubkans, J., & Lusis, A. R. (1997). Nature of fundamental absorption edge of WO3. In E. A. Silinsh, A. Medvids, A. R. Lusis, & A. O. Ozols (Eds.), Optical Organic and Semiconductor Inorganic Materials (vol. 2968, pp. 186–191). International Society for Optics and Photonics. Search in Google Scholar

31. Diaz-Reyes, J., Flores-Mena, J. E., Gutierrez-Arias, J. M., Morin-Castillo, M. M., Azucena-Coyotecatl, H., Galván, M., … & Mendez-López, A. (2010). Optical and structural properties of WO3 as a function of the annealing temperature. In Proceedings of the 3rd WSEAS international Conference on Advances in Sensors, Signals and Materials (pp. 99–104), 3–5 November 2010, Faro, Portugal. World Scientific and Engineering Academy and Society (WSEAS). Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Física, Física técnica y aplicada