Acceso abierto

Power Plant Cooperation In District Heating Considering Open Electricity Market


Cite

1. Fleiter, T., Steinbach, J., & Ragwitz, M. (2016). Mapping and Analyses of the Current and Future (2020–2030) Heating/Cooling Fuel Deployment (Fossil/Renewables). European Commission Directorate-General for Energy. Available at https://ec.europa.eu/energy/studies/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment_en Search in Google Scholar

2. Deshko, V. I., Zamulko, A. I., Karpenko, D. S., Mahnitko, A., & Linkevics, O. (2018). Evaluation of the district heating market efficiency as the function of its size and number of competing suppliers. In 2018 IEEE 59th Annual International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2018 (pp. 1–7), 12–14 November 2018, Riga, Latvia. doi:10.1109/RTUCON.2018.8659907.10.1109/RTUCON.2018.8659907 Search in Google Scholar

3. Dorfner, J., & Hamacher, T. (2014). Large-Scale District Heating Network Optimization. IEEE Transactions on Smart Grid, 5 (4), 1884–1891. doi:10.1109/TSG.2013.229585610.1109/TSG.2013.2295856 Search in Google Scholar

4. Ivanova, P., Sauhats, A., Linkevics, O., & Balodis, M. (2016). Combined heat and power plants towards efficient and flexible operation. In EEEIC 2016 – International Conference on Environment and Electrical Engineering (2434–2439), 7–10 June 2016, Florence, Italy. doi:10.1109/EEEIC.2016.7555874.10.1109/EEEIC.2016.7555874 Search in Google Scholar

5. Rezaie, B., & Rosen, M. A. (2012). District Heating and Cooling: Review of Technology and Potential Enhancements. Applied Energy, 93, 2–10. doi:10.1016/j.apenergy.2011.04.020.10.1016/j.apenergy.2011.04.020 Search in Google Scholar

6. EuroHeat & Power. (2013). District Heating and Cooling. Country by Country Survey 2013. Available at http://www.euroheat.org/Publications/ Search in Google Scholar

7. Hemmes, K., Zachariah-Wolf, J. L., Geidl, M., & Andersson, G. (2007). Towards Multi-Source Multi-Product Energy Systems. International Journal of Hydrogen Energy, 32 (10–11), 1332–1338. doi:10.1016/j. ijhydene.2006.10.013. Search in Google Scholar

8. Shabanpour-Haghighi, A., & Seifi, A. R. (2016). An Integrated Steady-State Operation Assessment of Electrical, Natural Gas, and District Heating Networks. IEEE Transactions on Power Systems, 31 (5), 3636–3647. doi:10.1109/TPWRS.2015.2486819.10.1109/TPWRS.2015.2486819 Search in Google Scholar

9. Rolfsman, B. (2004). Combined Heat-and-Power Plants and District Heating in a Deregulated Electricity Market. Applied Energy, 78 (1), 37–52. doi:10.1016/S0306-2619(03)00098-9.10.1016/S0306-2619(03)00098-9 Search in Google Scholar

10. Mathiesen, B. V., & Lund, H. (2009). Comparative Analyses of Seven Technologies to Facilitate the Integration of Fluctuating Renewable Energy Sources. IET Renewable Power Generation, 3 (2), 190–204. doi:10.1049/iet-rpg:20080049.10.1049/iet-rpg:20080049 Search in Google Scholar

11. Bioenergy Europe. (n.d.). Statistical Report. Available at https://bioenergyeurope.org/statistical-report.html Search in Google Scholar

12. Uris, M., Linares, J. I., & Arenas, E. (2015). Size Optimization of a Biomass-Fired Cogeneration Plant CHP/CCHP (Combined Heat and Power/Combined Heat, Cooling and Power) Based on Organic Rankine Cycle for a District Network in Spain. Energy, 88, 935–945. doi:10.1016/j. energy.2015.07.054. Search in Google Scholar

13. Schneider, T., Müller, D., & Karl, J. (2020). A Review of Thermochemical Biomass Conversion Combined with Stirling Engines for the Small-Scale Cogeneration of Heat and Power. Renewable and Sustainable Energy Reviews, 134. doi:10.1016/j.rser. 2020.110288. Search in Google Scholar

14. Liu, X., Wu, J., Jenkins, N., & Bagdanavicius, A. (2016). Combined Analysis of Electricity and Heat Networks. Applied Energy, 162, 1238–1250. doi:10.1016/j.apenergy.2015.01.102.10.1016/j.apenergy.2015.01.102 Search in Google Scholar

15. Wang, J., You, S., Zong, Y., Traeholt, C., Zhou, Y., & Mu, S. (2019). Optimal Dispatch of Combined Heat and Power Plant in Integrated Energy System: A State of the Art Review and Case Study of Copenhagen. Energy Procedia, 158, 2794–2799. doi:10.1016/j.egypro.2019.02.040.10.1016/j.egypro.2019.02.040 Search in Google Scholar

16. Geidl, M., & Andersson, G. (2007). Optimal Power Flow of Multiple Energy Carriers. IEEE Transactions on Power Systems, 22 (1), 145–155. doi:10.1109/TPWRS.2006.888988.10.1109/TPWRS.2006.888988 Search in Google Scholar

17. Fanti, M. P., Mangini, A. M., Roccotelli, M., & Ukovich, W. (2015). A District Energy Management Based on Thermal Comfort Satisfaction and Real-Time Power Balancing. IEEE Transactions on Automation Science and Engineering, 12 (4), 1271–1284. doi:10.1109/TASE.2015.2472956.10.1109/TASE.2015.2472956 Search in Google Scholar

18. Borcsok, E., Gersc, A., & Fulop, J. (2018). Applying Multiobjective Optimization for the Heat Supply in the Residential Sector in Budapest. In SACI 2018 – IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, (pp. 213–217), 17–19 May 2018, Timisoara, Romania. doi:10.1109/SACI.2018.8440986.10.1109/SACI.2018.8440986 Search in Google Scholar

19. Siewierski, T., Pajak, T., & Delag, M. (2018). Optimisation of cogeneration units in large heating systems. In International Conference on Software, Knowledge Information, Industrial Management and Applications, SKIMA (pp. 1–7), 6–8 December 2017, Colombo, Sri Lanka. doi:10.1109/SKIMA.2017.8294129.10.1109/SKIMA.2017.8294129 Search in Google Scholar

20. Chen, Y., Xu, Y., Li, Z., Feng, S., Hu, C., & Hai, K. L. (2019). Optimally coordinated operation of a multi-energy microgrid with coupled electrical and heat networks. In 2018 International Conference on Power System Technology, POWERCON 2018, (pp. 218–224), 6–8 November 2018, Guangzhou, China. doi:10.1109/POWERCON.2018.8602048.10.1109/POWERCON.2018.8602048 Search in Google Scholar

21. Zhou, H., Li, Z., Zheng, J. H., Wu, Q. H., & Zhang, H. (2020). Robust Scheduling of Integrated Electricity and Heating System Hedging Heating Network Uncertainties. IEEE Transactions on Smart Grid, 11 (2), 1543–1555. doi:10.1109/TSG.2019.2940031.10.1109/TSG.2019.2940031 Search in Google Scholar

22. Reynolds, J., Ahmad, M. W., & Rezgui, Y. (2018). District heating energy generation optimisation considering thermal storage. In 2018 6th IEEE International Conference on Smart Energy Grid Engineering, SEGE 2018, (pp. 330–335), 11–13 August 2018, Ontario, Canada. doi:10.1109/SEGE.2018.8499509.10.1109/SEGE.2018.8499509 Search in Google Scholar

23. Moshkin, I., & Sauhats, A. (2016). Solving district heating problems by using cooperative game theory methods. In EEEIC 2016 – International Conference on Environment and Electrical Engineering, (pp. 1–5), 6–9 June 2017, Florence, Italy. doi:10.1109/EEEIC.2016.7555462.10.1109/EEEIC.2016.7555462 Search in Google Scholar

24. Simons G., & Barsun, S. (2017). Combined Heat and Power Evaluation Protocol. Davis, California. Available at https://www.nrel.gov/docs/fy17osti/68579.pdf Search in Google Scholar

25. Muche, T., Höge, C., Renner, O., & Pohl, R. (2016). Profitability of Participation in Control Reserve Market for Biomass-Fueled Combined Heat and Power Plants. Renewable Energy, 90, 62–76. doi:10.1016/j.renene.2015.12.051.10.1016/j.renene.2015.12.051 Search in Google Scholar

26. Lako, P., Koyama, M., & Nakada, S. (2015). Biomass for Heat and Power. Technology Brief, IEA-ETSAP and IRENA Technology Brief E05. Available at https://irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA-ETSAP_Tech_Brief_E05_Biomass-for-Heat-and-Power.pdf Search in Google Scholar

27. Broka, Z., Kozadajevs, J., Sauhats, A., Finn, D. P., & Turner, W. J. N. (2016). Modelling residential heat demand supplied by a local smart electric thermal storage system. In 57th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2016, 13–14 October 2016, Riga & Cesis, Latvia. doi:10.1109/RTUCON.2016.7763128 .10.1109/RTUCON.2016.7763128 Search in Google Scholar

28. Sauhats, A., Kozadajevs, J., Dolgicers, A., Zalitis, I., & Boreiko, D. (2019). The impact of the district heating system thermal inertia on the CHPP operation mode. In 2019 IEEE 60th Annual International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2019, 7–9 October 2019, Riga, Latvia. doi:10.1109/RTUCON48111.2019.8982254.10.1109/RTUCON48111.2019.8982254 Search in Google Scholar

29. Lloyd S., & Shapley A., (1951). Value for n-person games. In H.W. Kuhn and A.W. Tucker (eds.), Contributions to the Theory of Games (vol. II). Annals of Mathematical Studies (v. 28), pp. 307–317. Princeton: Princeton University Press. Search in Google Scholar

30. TechLine (n.d.) Fuel Value Calculator. Available at https://www.fpl.fs.fed.us/documnts/techline/fuel-value-calculator.pdf Search in Google Scholar

31. Ivanova, P., Linkevics, O., & Sauhats, A. (2017). Mathematical description of combined cycle gas turbine power plants’ transient modes. In 17th IEEE International Conference on Environment and Electrical Engineering and 1st IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2017, (pp. 61–66), 6–9 June 2017, Milan, Italy. doi:10.1109/EEEIC.2017.797740510.1109/EEEIC.2017.7977405 Search in Google Scholar

32. Kumar, A., Cameron, J. B., & Flynn, P. C. (2003). Biomass Power Cost and Optimum Plant Size in Western Canada. Biomass and Bioenergy, 24 (6), 445–464. doi:10.1016/S0961-9534(02)00149-6.10.1016/S0961-9534(02)00149-6 Search in Google Scholar

33. Oleksijs, R., & Olekshii, B. (2019). Combined heat and power plant electrical equipment incident rate and unavailability empirical expression. In the Advances in Information, Electronic and Electrical Engineering, AIEEE 2019 - Proceedings of the 7th IEEE Workshop, 15−16 November 2018, Liepaja, Latvia. doi:10.1109/AIEEE48629.2019.8976989.10.1109/AIEEE48629.2019.8976989 Search in Google Scholar

eISSN:
2255-8896
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics