Acceso abierto

Benefits of Energy Storage Systems for Small-Scale Wind Farm Development in Latvia


Cite

1. Knapp, L., & Ladenburg, J. (2015). How Spatial Relationships Influence Economic Preferences for Wind Power. A review, 8, 6177–6201.10.3390/en8066177Search in Google Scholar

2. Zhao, H., Wu, Q., Hu, S., Xu, H., & Rasmussen, C.N. (2015). Review of Energy Storage System for Wind Power Integration Support. Applied Energy, 137, 545–553.10.1016/j.apenergy.2014.04.103Search in Google Scholar

3. Rosaria, M., Nucci, D., Will, A., & Krug, M. (2020). Deliverable 3.6. Catalogue of Potential Solutions to Overcome Acceptance Barriers for Each Country.Search in Google Scholar

4. Ministru kabinets. (2013). Ministru kabineta noteikumi Nr. 240. Vispārīgie teritorijas plānošanas, izmantošanas un apbūves noteikumi. Latvijas vēstnesis, 21 (5), 41.Search in Google Scholar

5. Windustry. (2008). Community Wind Toolbox. Minnesota.Search in Google Scholar

6. Bañuelos-Ruedas, F., Ángeles Camacho, C., & Rios-Marcuello, S. (2011). Methodologies used in the extrapolation of wind speed data at different heights and its impact in the wind energy resource assessment in a region. In Gastón O. Suvire (ed.), Wind Farm - Technical Regulations, Potential Estimation and Siting Assessment. IntechOpen.10.5772/20669Search in Google Scholar

7. European Wind Energy Association. (2012). Wind energy - The facts: A guide to the technology, economics and future of wind power. London: Earthscan.10.4324/9781849773782Search in Google Scholar

8. IEEE. (2018). Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces.Search in Google Scholar

9. Knipšis, A. (2012). Elektrisko pārvades tīklu elektroietaišu ekspluatācija. Rīga.Search in Google Scholar

10. Holttinen, H., Miettinen, J. & Sillanpää, S. (2013). Wind power forecasting accuracy and uncertainty in Finland. Espoo: VTT Technical Research Centre of Finland.Search in Google Scholar

11. Awasthi, A., Karthikeyan, V., Das, V., Rajasekar, S., & Singh, A. K. (2017). Energy Storage Systems in Solar-Wind Hybrid Renewable Systems. Green Energy and Technology, 189–222.10.1007/978-3-319-50197-0_7Search in Google Scholar

12. Ackermann, T. (ed.) (2012). Wind power in power systems (2nd ed.). England: John Wiley & Sons, Ltd.10.1002/9781119941842Search in Google Scholar

13. Wizelius, T. (2012). Design and Implementation of a Wind Power Project. Comprehensive Renewable Energy, 391–430.10.1016/B978-0-08-087872-0.00215-8Search in Google Scholar

14. Korchinski, W. (2012). The limits of wind power. Los Angeles: Reason Foundation.Search in Google Scholar

15. Swierczynski, M., Teodorescu, R., Rasmussen, C. N., Rodriguez, P., & Vikelgaard, H. (2010). Overview of the energy storage systems for wind power integration enhancement. In IEEE International Symposium on Industrial Electronics, 4–7 July 2010, Bari, Italy.10.1109/ISIE.2010.5638061Search in Google Scholar

16. Metlovs, S. (2013). Vēja elektrostaciju, kā arī citu atjaunīgo energoresursu izmantojošo elektrostaciju jaudas regulēšanas iespēju izpēte. Rīga: RTU.Search in Google Scholar

eISSN:
0868-8257
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics