Acceso abierto

The Comparison of the Efficiency of Small Wind Turbine Generators with Horizontal and Vertical Axis Under Low Wind Conditions


Cite

1. Bezrukovs, D., & Sauhats, A. (2017). Economic and Operational Risks in Wind Energy Projects in Latvia. Renewable Energy and Power Quality Journal, 15, 1–6. ISSN 2172-038X.: DOI:10.24084/repqj15.326.10.24084/repqj15.326Search in Google Scholar

2. Sauhats, A., Zemīte, L., Petričenko, Ļ., Moškins, I., & Jasevičs, A. (2018). Estimating the Economic Impacts of Net Metering Schemes for Residential PV Systems with Profiling of Power Demand, Generation, and Market Prices. Energies, 11 (11), 1–19. DOI: 10.3390/en11113222.10.3390/en11113222Search in Google Scholar

3. Petrichenko, L., Broka, Z., Sauhats, A., & Bezrukovs, D. (2018). Cost-benefit analysis of Li-Ion batteries in a distribution network. In Proceedings of the 2018 15th International Conference on the European Energy Market (EEM), 27–29 June 2018 (pp. 1–5). Łódź, Poland.10.1109/EEM.2018.8469782Search in Google Scholar

4. Zemite, L., Petrichenko, L., Sauhats, A., Linkevics, O., & Bockarjova, G. (2018). A Comparative Assessment of the Small-Scale Distributed Generation Policies in the EU and Latvia. In Solar & Wind Integration Workshop: E-Mobility Integration Symposium, 1/2018, (pp. 1–6).Search in Google Scholar

5. Shipkovs, P., Kashkarova, G., Lebedeva, K., & Migla, L. (2012). Use of renewable energy resources for reduction of environmental pollutions. The Fourth IASTED African Conference on Power and Energy Systems (AfricaPES 2012), (79–85), 3–5 September 2012, Gaborone, Botswana. CD Proceedings, ISBN: 978-0-88986-929-5.Search in Google Scholar

6. Bobinaite, V., & Priedite, I. (2015). RES-E Support Policies in the Baltic States: Electricity Price Aspect (Part II). Latvian Journal of Physics and Technical Sciences, 2, 13 – 25.10.1515/lpts-2015-0008Search in Google Scholar

7. Ostapenko, J., & Gamalejevs, A. (2004). Latvian wind energy guide. Riga, 96 p. Available at http://www.windenergy.lv/startpage/lv/Search in Google Scholar

8. Bezrukovs, V., Zacepins, A., Bezrukovs, V., & Komashilovs, V. (2016). Investigations of Wind Shear Distribution on the Baltic Shore of Latvia. Latvian Journal of Physics and Technical Sciences, 53 (3), 3–10.10.1515/lpts-2016-0016Search in Google Scholar

9. Aniskevich, S., Bezrukovs, V., Zandovskis, U., & Bezrukovs, D. (2017). Modelling the spatial distribution of wind energy resources in Latvia. Latvian Journal of Physics and Technical Sciences, 54 (6), 10–20. DOI: 10.1515/lpts-2017-0037.10.1515/lpts-2017-0037Search in Google Scholar

10. Bezrukovs, V., Bezrukovs, Vl., & Zacepins, A. (2014). Comparative Efficiency of Wind Turbines with Different Heights of Rotor Hubs: Performance Evaluation for Latvia. J. Phys.: Conf. Ser. 524 012113. DOI:10.1088/1742-6596/524/1/012113.10.1088/1742-6596/524/1/012113Search in Google Scholar

11. Godoy Simões, M., & Farret, F.A. (2014). Modelling and analysis with induction generators (3rd ed.). CRC Press.Search in Google Scholar

12. Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2009). Wind energy explained: Theory, design and application. USA: John Wiley & Sons Ltd.10.1002/9781119994367Search in Google Scholar

13. Catalogue of European Urban Wind Turbine Manufacturers. (2017). Available at http://www.urbanwind.net/pdf/CATALOGUE_V2.pdfSearch in Google Scholar

14. Bezrukovs, V., Zacepins, A., Bezrukovs, Vl., & Komashilovs, V. (2016). Comparison of Methods for Evaluation of Wind Turbine Power Production by the Results of Wind Shear Measurements on the Baltic Shore of Latvia. Renewable Energy, 96, Part A, 765–774.10.1016/j.renene.2016.05.007Search in Google Scholar

15. Storch, H. von, & Zwiers, F.W. (2003). Statistical analysis in climate research. Cambridge: Cambridge University Press.Search in Google Scholar

16. Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A., Firth, D. (2017). Support Functions and Datasets for Venables and Ripley’s MASS. Available at https://cran.r-project.org/web/packages/MASS/Search in Google Scholar

17. Kharin, V.V., & Zwiers, F.W. (2000). Changes in the Extremes in an Ensemble of Transient Climate Simulations with a Coupled Atmosphere–Ocean GCM. Journal of Climate, 13, 3760–3788.10.1175/1520-0442(2000)013<3760:CITEIA>2.0.CO;2Search in Google Scholar

eISSN:
0868-8257
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics